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I. INTRODUCTION

Deep learning-based models are a robust approach to tackling
the problem of classification, where conventional methods
have proven less so. An example of where these approaches
have been applied is sound classification: trying to identify
events in sound clips. A real world example of where this
applied is in smart home technology. Auditory features such as
log-mel (LM) spectrogram, mel frequency cepstral coefficient
(MFCC) and raw audio waveforms can be used to train deep
learning models designed to tackle this problem. In sound
recognition, schemes often applied to one specific type of
sound, such as music or speech, do not translate effectively to
others, namely environment sound classification. This can be
attributed to the lack of similar and repeated audio character-
istics as found commonly in speech or music.

The approach taken by Su et al [1] is based around a stacked
four-layer CNN architecture. Their first step is feature extrac-
tion, for which they extract five auditory features including
LM and MFCC. After combining these, they train two CNNs
separately, and use a late fusion method to combine these
results. Through experiments they find that merging neural
networks, trained on different features and using decision level
fusion, gives better results than deep architectures trained on
combined features in this classification problem.

In this paper we attempt to replicate the results achieved
by Su et al [1] by reproducing their proposed method, specif-
ically the four-layer architecture with a simplified late fusion
approach and smaller train/test fold.

II. RELATED WORK

In their work, Li et al [2] attempt to tackle the same problem of
environmental event sound recognition. They use an ensemble
stacked convolutional neural network. Both papers use the
same method to fuse two CNNs for greater performance.
The approach used by Li et al [2] involved training two
CNNS, one with LM spectrograms as input, the other with raw
waveform information. These two CNNs were combined using
Dempster-Schafer (DS) evidence theory to form an ensemble
DS-CNN model, just as the paper we are replicating. This
was then tested on three datasets, with the UrbanSound8k
being the common dataset across both approaches. Their CNN
architecture was similar to that of Su et al [1], with the major
change being an extra convolutional layer.

As an alternate approach to the problem of environmental
sound classification, Salamon and Bello [3] explore the use
of unsupervised feature learning. While this technique had
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previously been successfully implemented with music, they
specifically take on the challenge for urban sound audio. They
use a random forest classifier in their classification stage.
This team also uses the UrbanSound8k dataset. With this
method they manage to capture the irregular dynamics of
environmental sound recordings. Some specific classes showed
better performance, such as the engine idling and jackhammer
classes, due to the presence of some short repeated audio
characteristics.

III. DATASET

The dataset used is UrbanSound8k. This is a collection of 8732
urban sound clips (WAV files) that are less than 4 seconds
long. The total length of all of these clips is about 9.7 hours.
Each clip is labelled as belonging to one of 10 distinct classes:
air conditioner, car horn, playing children, dog bark, drilling,
engine idling, gun shot, jackhammer, siren, street music. The
original paper used a 10-fold train/test split, however for speed
we are using a simple train/test split of 9:1.

IV. INPUT

The LMC and MC inputs are aggregations of the auditory
features chroma, spectral contrast and tonnetz, with the LM
spectrogram and the MFCC features respectively. The LM
spectrogram is a widely used feature in environmental sound
classification, and it is a representation of the frequency
spectrum on a log-mel scale, which is a modified frequency
scale based on how people hear pitch. The feature used for
MC on the other hand, MFCC, is the result of applying the
discrete cosine transform on the LM spectrogram.

LMC MC

Fig. 1. Spectrograms of a LMC and MC input



In our implementation, these features are each of size
41 x 60 (as we set our LM feature to have 60 channels to
match the size of MFCC). The sizes of the chroma, spectral
contrast and tonnetz features are respectively 41 x 7, 41 x6 and
41 x 12. After stacking the features with LM/MFCC on top of
chroma, spectral contrast and tonnetz, in that order, the total
size of the input is 41 x 85, giving us our LMC/MC inputs
respectively. We will test our late fusion method against a
network trained on the combination of both features; MLMC.
The MLMC feature sets have size 41 x 145, and we simply
stack the MFCC feature on top of the existing LMC input.

Exemplar LMC and MC spectrograms can be seen in Fig 1,
where the four segments are clearly visible for some random
test sample, where each segment has been scaled to be more
prominent.

V. ARCHITECTURE (SU ET AL [1])

We call the two networks based on the LMC and MC features
LMCNet and MCNet respectively, and they both have the same
4-conv architecture, shown in Fig 2. In this diagram we label
output sizes for each layer where the overall input size is
41 x 85. Each convolutional layer uses a 3 x 3 kernel size
and 1 x 1 padding to retain the input size. The activation
function used is ReLU [4]. We use 2 x 2 Max Pooling
between the second and third convolutional layers also with
the same padding (due to the odd dimensionality). The first
fully connected layer uses the Sigmoid activation function.
Finally, to improve generalisation of the networks, we use
Batch Normalisation [5] on each of the convolutional layers
(before the activation function) and standard Dropout [6] on
the output of the second, fourth and fifth layers.

The description of the architecture presented in the original
paper is inconsistent. Su et al [1] state that for their kernels
in each convolutional layer, they use a stride of 2 x 2. If they
indeed used a stride as suggested on each layer then the layer
sizes would halve each time, whereas they document that they
stay the same. This implies there are two solutions. Removing
all the stride suggested and instead implementing another max
pool layer between the convolutional layers and the first fully
connected layer, or remove stride from all the convolutional
layers except the final one. Both of these would result in the
correct network size (and number of parameters, Fig 3) with
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only slightly different results. We opted with the latter of these
options.

VI. IMPLEMENTATION DETAILS

Once we had implemented the CNN architecture described
in Fig 2, we attempted to replicate the LMCNet and MCNet
results in the paper. To achieve the best possible results we
needed to tweak variables which were not initially stated
explicitly. The original paper seemed to suggest the use of
the Adam optimiser [7], with learning rate 0.001, batch size
32, where we subject all weights to Lo Regularisation and
use a Dropout probability of 0.5. Cross entropy was used to
compute loss throughout and Dropout was applied only in
training. The original paper implied the use of a Softmax layer
on the network output, but since PyTorch’s implementation
of Cross Entropy Loss does this automatically, we didn’t
explicitly include this. Similarly, they used a momentum of
0.9, however the Adam optimiser does not use momentum in
the same way as typical Stochastic Gradient Descent (SGD),
so this value is also surplus.

Upon initial creation of the network from Su et al [1]
we made sure that the number of parameters in the model
was correct, using a PyTorch Summary script to produce the
table shown in Fig 3. Originally our number of parameters
was too high, the difference being the “bias” values for each
layer which we subsequently removed to get the right figures.
Note that in Fig 3 it displays Dropout2D layers, however
we ultimately changed these to standard Dropout layers as
it gave better performance despite the first two Dropout layers
acting on 2D data, where these more complicated Dropout
layers should benefit generalisation. Similarly, the position of
the Dropout layers was ambiguous in the paper. After trying
different possible positions, such as on the input of the layer or
before the activation function, we decided to have the Dropout
on the output as described, as this is most conventional.

We found, upon implementing the described model, that
it was prone to significant overfitting, which is noticeable in
Figures 4 and 5, despite the Batch Normalisation, Dropout
and Lo Regularisation techniques included to mitigate this.
The network seemed to learn incredibly quickly, reaching
a local minimum within a few epochs with the validation
accuracy fluctuating consistently afterwards. We used the
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Fig. 2. Diagram of the DNN we reproduced with labelled output sizes



Conv2d-1
BatchNorm2d-2
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Linear-12 15,859,712
Dropout-13
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Fig. 3. A breakdown of the number of parameters in our CNN

amsgrad option for the Adam optimiser to mitigate unwanted
convergence [8]. In PyTorch, Lo regularisation is implemented
by a weight decay term, which we set to 0.00001 to generate
our results. Research suggests that performing this regularisa-
tion on Adam is ineffective unlike typical SGD and instead
a proper implementation of weight decay, rather than Lo
regularisation, should be used - implemented in the AdamW
optimiser [9]. Decreasing the learning rate or using SGD with
Nesterov Momentum for optimisation provided slower learn-
ing but ultimately the same overfitting occurred, oscillating
around similar values. Ultimately we decided to stick with
the standard Adam optimiser as to stay true to the original
paper despite the theoretical improvements to overfitting other
configurations can provide. We trained both networks for 50
epochs, shuffling training data each time.

To evaluate the performance of the networks prior to fusion,
we needed to group audio segments. Each audio clip is split
into a number of segments during training and for testing,
however to properly evaluate whether an audio clip was
correctly classified we need to average the predictions on each
of its segments. These predictions are then what is used to
compute the validation accuracy seen in Fig 5 and in our
results table, Fig 4. We used a simple train/test fold instead of
the original 10-fold approach meaning we may have more bias
or optimistic results. We then saved the combined predictions
(logits vector) for each audio file into a JSON file via an
internal dictionary. This would happen in every validation
call during training as well as after-the-fact using the trained
network (in form of a checkpoint file, .pt) using our test script.

Once we had successfully trained LMCNet and MCNet and
replicated the results required, we implemented a simplified
late fusion method. Saving the results of each network as a
JSON allowed us to combine the results immediately. Creating
a list of correct/incorrect predictions (overall and per class)
for each network was simple by averaging the logits between
the two networks for the same audio files. This produced our
combined prediction, TSCNN.

Class LMCNet | MCNet | MLMC | TSCNN
aircon 50.0% 48.0% 36.0% 47.0%
carhorn 93.9% 90.9% | 90.9% 90.9%
children 89.0% 91.0% | 83.0% 91.0%
dog bark 80.0% 81.0% | 78.0% 81.0%
drilling 80.0% 79.0% | 81.0% 80.0%
engine 56.9% 65.6% | 61.3% 62.4%
gunshot 96.9% 96.9% | 96.9% 96.9%
jackhammer | 100.0% 92.7% | 97.9% 98.9%
siren 59.0% 63.9% | 54.2% 66.3%
street music 94.0% 80.0% 84.0% 90.0%
Average: 79.9% 782% | 76.3% 80.4%

Fig. 4. The Per Class Accuracy results for replicated networks and late fusion

VII. REPLICATING QUANTITATIVE RESULTS

Our replicated results can be seen in Fig 4. We expected better
performance on our LMC network and worse on our MC
network but we believe the difference is down to the nature
of the features. Despite this the results have been replicated
quite closely.

VIII. TRAINING CURVES

The training and validation curves for the LMC, MC and
MLMC networks can be seen in Fig 5. In each of the
training graphs we have the expected result: training accuracy
increases while loss decreases. It does seem that the networks
learn too fast, primarily due to the combination of the Adam
optimiser and the relatively high initial learning rate stated
in the paper. The validation curves are more worrying, as
validation accuracy fluctuates around a steady rate with very
little initial growth. This is down to a combination of this
quick initial growth and never improving on the local minima
that was found. The validation loss curves actually show
increasing loss over time for our validation set which is a large
indicator of overfitting in our network. The loss represents how
confident in the predictions the network is and over time, as
the network becomes increasingly specialised to the training
set, the outputs for our validation set become less and less
sure.

Ovetfitting is clearly a major problem with this network
despite all the precautions proposed in the original paper being
implemented. It seems as though for a network of this size we
have not got enough data to generalise well, where perhaps a
smaller network like that suggested by Li et al [2] is better
suited for the dataset size. The speed of our network makes it
seem like we barely learn at all, although we do, just incredibly
quickly.

IX. QUALITATIVE DETAILS

To provide some qualitative analysis of our network perfor-
mance we made our fusion script output sets of matrices
corresponding to the indices of sound clips that met certain
criteria. Example inputs for the first three of these cases can
be seen in Fig 6. There were no cases where both the LMCNet
and MCNet were unsuccessful but the fusion method correctly



LMC

MC

MLMC

1.2 1.2 1.7
1.1 1.1 1.1
1 1 1
0.9 0.9 0.9
0.8 0.8 0.8
0.7 0.7 0.7
0.6 0.6 0.6
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 .1
a ] 0
-0.1 -0.1 -1
2k Ok 0 10k 20k 30k 40k 50k GOk 70k BOk 9( 56 Ok 0 10k 20k 30k 40k S0k 60k 70k 80k 90 Ok 0 10k Z0k 30k 40k 50k GOk 70k 80k 30
B . 3
<4 2.4 3
2.2 2.2 5
é 5 2.5
1. 1.8 \
1.6 16 ‘
1.4 1.4 -
13 W 2 ’-/_/&—/M e
1 1
0.8 0.8 !
0.6 0.6
0.4 0.4 .5
0.2 0.2
(‘] i | o o - A e
-0.2 -0.2
0.4 0.4 0.5

Ok 0 10k 20k 30k 40k 50k 60k 70k B0k 90

Ok 0 10k 20k 30k 40k 50k GOk 7Ok 80k %0

Ok 0 10k 20k 30k 40k 50k 6Ok 70k B0k S0

Fig. 5. Training/Validation Accuracy (top) and Loss (bottom) curves for LMC, MC and MLMC

classified, showing that the fusion is entirely dependent on the
performance of the original networks: if these suffered due to
overfitting then the fused results are less likely to improve
in areas both networks were wrong, as the predictions were
already too specialised.

In Fig 6 the first input, 50, was incorrectly classified by
both networks. Looking at the relevant output vectors of each
network one can see that they both predicted, incorrectly, that
the event was a jackhammer as opposed to an engine. Based
on our results this is expected as both networks reported a
success of > 90% for jackhammer classification but < 66%
successful for engines - signalling a specialisation toward
jackhammers detracting from the engine classification. Also
depending on the clarity of the clips these are very similar
sounds - repetitive and harsh, which may contribute to similar
initial feature sets. Noticeably in this example the MC network
is actually not too wrong, 2/3 sure about jackhammer and 1/3
toward engine. However the LMC network was significantly
worse with almost no weighting attached to the correct label,
perhaps due to the lack of noticeable patterns in this particular
feature space.

In the same figure, the input indexed by 15 was correctly
classified (children), whereas 16 was only classified correctly
by one despite being of the same class. The LMC network
was very sure about 15 and was only just correct about 16
- about 60/40 between children or dog barking. MCNet on
the other hand was incredibly sure about 16 being a barking
dog as opposed to children. This could of course depend on
the type of dog - perhaps a higher pitched dog bark could
sound like children. This was one of the examples where the
fusion did not predict correctly as the MCNet prediction was
so certain whereas the LMC was not, despite being correct.
This demonstrates the weakness of this simple fusion method,
succumbing to the specialisation of one network despite the
correctness of another.

Finally, Fig 1 shows an input that was only correctly
classified by MCNet, which was confident in it’s prediction.
LMCNet’s prediction was rather general, about 45/35 between
two incorrect labels and small weightings for the others.
Luckily, due to the certainty (and that LMCNet was not
dramatically uncertain) of MCNet the fusion method combined
the results and classified the input correctly. This sample was
an engine sound and clearly from Fig 4 our LMCNet is much
less accurate than MCNet for this sound event, but the 10%
more accuracy in MCNet makes up for the other network.
In 165 cases where one prediction was correct and the other
was not, 58 were correctly classified by fusion leading to the
improvement shown by TSCNN over LMCNet and MCNet.

Based on Fig 4 and looking at the examples which weren’t
classified correctly, it is clear that this simple late fusion
method brings the best out of both individual networks.
However it is also clear it does not do anything to favour
the samples where both networks were wrong.

X. IMPROVEMENTS

Looking at our graphs in Fig 5 we felt that we should be
able to tweak the hyper-parameters of our model to reduce
the training accuracy slightly in return for better test accuracy.
We initially experimented with tweaking the learning rate, with
lower rates giving us a much smoother curve but ultimately no
increase in performance. Instead, we varied the Dropout rate.
Although 0.5 is often the best Dropout probability for retaining
information in hidden layers, values closer to 1 perform better
at retaining information from the initial inputs [6]. We tried a
range of values between 0.5 and 0.9 and found that running
the model with a probability of 0.7 found a sweet spot between
better generalisation (and thus worse accuracy) and what we
had already achieved. We found the natural range of accuracies
produced with this change averaged a couple percent higher
than before, and the results of a single run under this changed
parameter can be seen in Fig 7.
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Fig. 6. Test Inputs which were correctly classified by neither networks, both network and one of the two networks (indexes 50,15,16 respectively)

We explored further ways we could improve the model’s ca-
pability, particularly improve the overfitting. We experimented
with many ways to do this, using more impactful weight
decay [9] or adding more Dropout/batch normalisation layers.
Another way to improve generalisation is to train on more
data, so we tried data augmentation: Gaussian Noise. We
implemented a custom Gaussian noise layer and parameter
but it did not improve our results. Finally we experimented
using SGDR [10], Cosine Annealing to control the learning
rate for standard SGD optimisation with Nesterov Momentum
where the learning rate is reset regularly to deal with settling
in local minima. All of these approaches suffered the same
fate, they could all be run to improve generalisation but in
expense of some accuracy which is completely expected. One
method we would have tried with more resources is Early
Stopping, as it was clear in many of the training phases we
found that after reaching a reasonable accuracy it would just
fluctuate with validation loss increasing. In many of our runs,
including using a higher Dropout, effective Early Stopping
would have improved our accuracy further as we would have
stopped training at the best time.

XI. CONCLUSION AND FUTURE WORK

In this report we have shown that we were able to reproduce
the results of Su et al [1] to a reasonable degree of accuracy
using the model they described. In review of this model it
is clear that the model suffers from overfitting despite the

Class LMCNet | MCNet | MLMC | TSCNN
aircon 49.0% 69.0% | 48.0% 63.0%
carhorn 93.9% 75.8% | 96.9% 90.9%
children 92.0% 95.0% | 80.0% 95.0%
dog bark 74.0% 72.0% 81% 75.0%
drilling 79.0% 83.0% 79% 82.0%
engine 70.9% 80.6% | 79.6% 78.5%
gunshot 100.0% 100% 96.9% | 100.0%
jackhammer | 98.9% 91.7% | 98.9% 98.9%
siren 61.4% 56.6% | 56.6% 61.4%
street music 93.0% 86.0% 88.0% 90.0%
Average: 81.2% 80.9% | 80.5% 83.5%

Fig. 7. Improved Per Class Accuracy results for our networks and late fusion

mitigations put in place. We have shown how difficult it is to
replicate published papers which don’t give enough explicit
information or provide sample code, instead having to try
different configurations to try and achieve a similar result.
We highlighted many areas in the original paper where we
found inconsistencies as well as theoretical shortcomings. We
explored several improvements to try and reduce this further
but ultimately, as expected, could not increase the overall
accuracy while doing so, instead increasing generalisation and
showing a truer representation of model. We did of course
manage to improve on the model by fine-tuning the Dropout
probability, although there is definitely room for further ex-
perimentation, possibly with a completely new architecture.
We would suggest a new model built for this task would
incorporate many of the techniques we experimented with in
our improvements. Ultimately, we are pleased with the degree
which we were able to reproduce the model given and would
be interested in what a better performing architecture may be.

REFERENCES

[11 Yu Su, Ke Zhang, Jingyu Wang, and Kurosh Madani. Environment sound
classification using a two-stream cnn based on decision-level fusion.
Sensors, 19(7):1733, 2019.

[2] Shaobo Li, Yong Yao, Jie Hu, Guokai Liu, Xuemei Yao, and Jianjun
Hu. An ensemble stacked convolutional neural network model for
environmental event sound recognition. Applied Sciences, 8(7):1152,
2018.

[3] Justin Salamon and Juan Pablo Bello. Unsupervised feature learning
for urban sound classification. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 171-175.
IEEE, 2015.

[4] Abien Fred Agarap. Deep learning using rectified linear units (relu).
arXiv preprint arXiv:1803.08375, 2018.

[5] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[6] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research, 15(1):1929—

1958, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence

of adam and beyond. arXiv preprint arXiv:1904.09237, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regulariza-

tion. 2018.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent

with warm restarts. arXiv preprint arXiv:1608.03983, 2016.

[7

—

[8

—_

[9

—

[10]



