
Methods for generating road
networks in car parks

May 9, 2019

by Tim Roderick,
supervised by Dr Richard Porter

Mathematics Project
20 Credit Points at Level 6

School of Mathematics, University of Bristol

Contents

1 Introduction 4
1.1 Background . 4

1.1.1 Tile and Trim . 5
1.1.2 Deterministic approach to optimising the road 5
1.1.3 Variational approach to optimising the road 6
1.1.4 Optimising over road networks . 6

1.2 Problem Statement . 7
1.2.1 The Car Park . 7
1.2.2 The Road Network . 7

2 The Deterministic Approach 7
2.1 Details of the road network . 8
2.2 How the road network is created and expanded 8
2.3 Attributes of the road network to consider 9
2.4 Cost function for growing network . 10
2.5 Simplifying the approach . 11

2.5.1 Boundary of the car park . 11
2.5.2 How we grow the network . 12
2.5.3 Representation of a car parking space 12

2.6 Simplified cost function . 14
2.6.1 Cost function for selecting the vertex to grow from 14
2.6.2 Cost function for deciding how we grow from a chosen vertex 15

2.7 Growing the network . 17
2.7.1 Choosing a vertex to grow from . 17
2.7.2 Choosing the direction to grow from a chosen vertex 18

2.8 Optimisation of parameters . 18
2.8.1 The issue of optimisation . 19
2.8.2 The brute force approach . 19

2.9 Explanation of code . 20
2.9.1 Using “layers” to improve performance using memoisation 20
2.9.2 Implementation of the cost functions 21
2.9.3 Brute force minimisation of objective function 22

2.10 Results . 22
2.10.1 Square car park boundaries . 23
2.10.2 Rectangular car park boundaries 24

2.11 Result conclusions . 27
2.11.1 The issue of parameters not being effective across different grid sizes 27
2.11.2 Certain attributes being ignored . 27
2.11.3 Overall approach conclusions . 28

3 The Stochastic Approach 28
3.1 Explaining how we grow . 29
3.2 Formalising the rule sets for considerable new vertices 29

3.2.1 Completeness and relaxation of rules 30
3.3 Filtering the candidate vertices . 31
3.4 Uncertainty and how we can use it in our filtering of potential vertices . . . 32
3.5 Growing the network . 33

3.5.1 Pruning the road network . 34

2

3.6 Simulation . 35
3.7 Explanation of code . 36

3.7.1 Implementation of rule sets and relaxation of rules 36
3.7.2 Ordering of filters in the filtering process 38
3.7.3 Incorporating uncertainty into the filtering process 39
3.7.4 Implementation of the cleaning process 40
3.7.5 Brute force approach to optimising over our parameters 42

3.8 Results . 42
3.8.1 Square car park boundaries . 43
3.8.2 Rectangular car park boundaries 45
3.8.3 Result conclusions . 47
3.8.4 Performance in comparison to deterministic approach 47
3.8.5 Parameter choice and general application 48
3.8.6 Issue of how our rule choices negatively effect road network 49
3.8.7 Overall approach conclusions . 49

4 Conclusions and possible extensions 50
4.1 Testing both approaches with more complex car park configurations 50
4.2 Using a generative model and the Fourier transform to construct the road

network . 50
4.3 Using genetic algorithms to improve the road network structure 51
4.4 Reinforcement learning as an approach to optimising the road network . . 51

5 Appendices 51
5.1 Python code for the Deterministic approach 51
5.2 Python code for the Stochastic approach 56

3

1 Introduction

As cities towns and villages expand, so does the scale of their urban developments. Su-
permarkets that are expected to serve thousands of people are being squeezed into spaces
as small as a humble cal-de-sac. As you can imagine, this brings along many engineering
problems that must be tackled for the development to function correctly. One of the main
concerns is allocating enough car-parking space to serve the number of people.

The immediate question one may ask themselves upon entering a car park that is at
capacity on a Tuesday evening is whether the design can be improved. Designers have
constructed this car park with that goal in mind. Has the designer of this car park
successfully maximised the number of car parking spaces? Rearranging the spaces to a
different configuration may lead to more spaces being available. This project will focus
on these configurations to find designs and layouts of car parks.

This project will not focus on bespoke car parks as with complete freedom to design a
structure specifically for car parking, many issues can be mitigated. Instead this project
will focus on what was described above, the allocating of car-parking spaces into an area
that was not initially designed for such a task; retrofitting. The area in which these
car-parking spaces are being allocated could have, in the ideal case, a rectangular or
polygonal boundary that complements the shape of the car; however, in the more com-
mon case, the areas that are being chosen for these developments may be a collection of
smaller developments from a time where accommodating for such large, structured spaces
was unnecessary. These boundaries can be significantly complex. Consideration must
also be taken for obstacles that may add complexity to the design in some way, such as
supporting pillars in underground parking or trolley bays at a supermarket.

Although struggling to find an empty parking space is one unfortunate consequence of
having a car park that does not adequately accommodate the number of cars it should,
there is more significant motivation. For many types of developments, local authorities
will not provide planning permission unless they can be assured that there will be ad-
equate parking so as not to cause a “spill-over” where parking spaces elsewhere will be
used instead due to demand. In the example of constructing a new block of flats, this
directly affects the amount of potential profit from a planned estate as they will only
be able to accommodate as many living spaces as they can the appropriate ratio of car
parking spaces. Another example is that the cost of underground parking in the United
Kingdom is typically £15,000 per space [12]. In areas that are much more costly to pur-
chase land, such as London, this value could be much higher. These examples provide
ample motivation for maximising the number of possible car parking spaces in a car park
design.

1.1 Background

Currently the designers of a car park may not have an appropriate automated set of tools
to assist them. Their intuition and experience will be used to configure the space to be
satisfactory – not necessarily optimal. Because of this, researchers have given some initial
consideration of how methods could be developed to aid the designer and optimise some
basic configuration. The methods contained in [1] for example include the following:

4

1.1.1 Tile and Trim

This approach looked at packing cars into a space, allocating room for the roads. First,
the “best” packing of cars in an infinitely long car park was found. This was done by
considering the angle at which the parking spaces could be rotated, relative to the adja-
cent road, to reduce the amount of road needed to turn into a space. The spaces were
also arranged so that they were stacked in pairs to form a “rectilinear double-row parking
pattern” to reduce wasted space while still ensuring every space was accessible. Under
these general assumptions, the most optimal packing of cars was found to be a rectilinear
double-row parking pattern [1].

After considering this infinitely long car park, the Tile and Trim approach was then
formalised for a bounded car park. The approach used the optimal pattern determined
for the infinite unbounded case in the following steps to produce a rough estimate for the
optimal solution:

“1. Overlap the given finite polygon with the best packing for the infinite plane.

2. Turn and shift the given polygon to maximise the number of cars from the
background packing falling inside the polygon.

3. Trim away a small number of car spaces to provide connection between
otherwise unconnected lanes, ensuring that all spaces are accessible.

4. if there are pillars or obstacles inside the polygon, remove the conflicting
car spaces. ”

This approach was considered similarly by [2] with the idea of generating the best possi-
ble pattern of parking spaces and packing this pattern into the space optimally. They used
Mixed Integer Linear Programming (MILP)[7], Constraint Programming, and Stochastic
Optimisation to optimise their objective function to determine the configuration of the
patterns that was optimal.

1.1.2 Deterministic approach to optimising the road

This approach attempted to select a road network aiming for each part of the car park
to be accessible from the road. The problem was then creating an optimal configuration
of a road that lead to a maximal amount of car park area being accessible from the road
inside a bounded area. This was a “road first” approach dissimilar to the packing problem
tackled with the Tile and Trim approach.

This approach defined the road to be a closed loop, approximated by a piecewise lin-
ear curve connecting a set of nodes lying in a domain. The domain chosen was the unit
square and the points in the domain were randomly distributed. The approach aimed to
determine the position of the nodes that would minimise a cost function, designed so that
at it’s minimum,

“(i) as much of the domain as possible is within a distance lr of one of the
linear parts of the loop, (ii) as little of the domain as possible is is within a
distance lr of more than one non-contiguous segments of the loop, (iii) the angle
at each node is between π/2 and 3π/2,(iv) the loop is everywhere more than lr
from the boundary of the domain. Here, lr is the half-width of the road plus the
length of a parking space.”

5

The approach minimised the cost function using repeated passes of firstly a genetic
algorithm and secondly the Nelder-Mead simplex algorithm, as implemented in MATLAB
(ga and fminsearch) with default parameters. This converged to a local minima based off
of an initial guess, but often not the global optimal solution.

1.1.3 Variational approach to optimising the road

This approach attempted to find a similar optimised network of roads, as in the previous
deterministic approach. However, instead of looking to maximise the accessible space
around nodes, it looked at how near any point was to a desired amount of road within the
space. The road networks quality was determined by the spatial integral over a function
that was defined as the absolute value of the difference between the actual and desired
road length (at each point). Only non-branching continuous paths were considered. The
idea behind this is that any point belonging to the space should have as little road around
it as possible for an optimal solution. This approach produced a cost function as a spatial
integral, the Euler-Lagrange equation was used in its optimisation to find the minimum
of the difference between the actual and desired road length.

1.1.4 Optimising over road networks

The previous two approaches generally attempted to determine the global optimal road
network by finding a minimum of a cost function. This approach instead considered that
a small number of candidate car park configurations can be selected by the designer based
on intuition, taking into account the entrance and all internal obstacles such as stairwells
and lift shafts. These layouts can then be optimised and compared to determine the best
layout of those candidates.

This approach developed an algorithm that quickly determines which candidate car park
layout provides the best potential for maximum capacity. Instead of addressing the ac-
tual packing of cars distributed around the network, the algorithm instead considers areas
of general parking space adjacent to the network. The algorithm still outputs a figure
representative of total capacity, but not the actual maximum packing necessarily. This
approach adopted a general rule that was defined in the Tile and Trim approach,

“that nose in parking (i.e.parking 90 degrees to the road) provides the most
efficient packing of cars. Using this we assume that, along each linear segment
of the road network, we always attempt to park nose in and make no account for
other types of parking tiling patterns such as parallel parking or herring-bone.”

The road network for this approach was defined as N vertices with M line segments
each connecting two vertices within the network. One vertex was attached to the entrance
of the car park. The cost function for this approach was the weighted sum of the following:

1. The overlapping area of any of the rectangular parking stalls with one another.

2. The overlapping area of any of the rectangular parking stalls with the boundary of
the car park.

3. The overlapping area of any of the rectangular parking stalls with the internal ob-
stacles of the car park.

4. The total ’void’ area defined as the sum of the above three areas.

6

A crude estimate for the number of parking spaces for a configuration came from taking
the total available non-void parking area and dividing it by the the area of a single parking
space. This estimate was used to assess the performance of the different candidate car
park layouts.

1.2 Problem Statement

Before we fully consider the problem, some initial assumptions can be made about how
we may view the spaces we are considering and how they may be defined mathematically.

1.2.1 The Car Park

For the choice of the empty car park space, it is going to be assumed to be single
storey with a single entrance for cars (that also functions as the exit). This
assumption will simplify the problem, both computationally and analytically,
without straying far from the setting of the problem; if there are multiple layers
to a car park, then it is starting to resemble the multi-storey bespoke car park
described before – not quite the retrofitting scenario at hand. The complexity
of the car park boundary will be realistic, meaning not necessarily polygonal
but also not significantly erratic. This definition is partially subjective and
will surely not suffice to define some bound on how complex the boundary can
be. Instead it is a guideline more so on how we choose the space to assess
the algorithms performance, giving less significance in the results to the more
erratic and less realistic parking lot boundaries. Allowance should be made for
large internal obstacles that may significantly obstruct a potential parking space
configuration.

1.2.2 The Road Network

The road network will be defined as a topology of the roads within the car park.
The car park itself was assumed to have one entrance / exit, meaning that for
our road network, there will be one assumed breach of the edge of the car park
which is one point on this network. For the road, we do not consider how easy
it is for the car to traverse the space as we only want to prioritise the amount of
potential parking spaces available. This causes another assumption being that
the road network should not contain any closed loops. This is because for any
closed loop, by removing the appropriate amount of road on this loop, room for
another space can be created while still ensuring that there is a path from any
point on the network to the entrance. The above assumptions naturally define
the road network to be a tree [3] that branches out into the car park space,
filling it with road to access the space adjacent to the network.

Using the initial assumptions above, the problem can be formalised by the following:
Given the boundary of a car park, with a defined entrance (which also functions as an
exit) on the boundary, find a layout that maximises the number of car parking spaces
with as little road as possible.

2 The Deterministic Approach

The approach that will initially be taken to explore this problem will be aligned with
1.1.4, with the idea of focusing on the road rather than the packing of the cars and how

7

they may be tiled or patterned. In 1.1.4, the assumption was that the designer would be
able to select specific candidate car parks for consideration based on intuition. Instead,
we will aim to develop an algorithm that generates these candidate car parks. The algo-
rithm will aim to grow the network of roads itself from a starting point to fill the space.
It will select a point to grow from and then decide how it will grow from that point. The
network should stop growing once it has filled the space completely with either road or
car parking space.

Motivation for this choice of approach can come from problems found in nature such
as the root systems of plants which aims to grow the roots into a space in search of
nutrients. There are also many man-made problems that are similar such as irrigation,
and warehouse design. There is also some connection between these problems and the
problem that comes from the field of robotics associated with how a moving robotic device
plans its motion through a space populated with obstacles. Motivation for this also came
from the described possible extensions to the approaches described in [1] where you could
automate the design of the network.

2.1 Details of the road network

The network for the parking lot can be mathematically defined as a Graph G = (V,E)
with a set of Vertices V of order n and a set of edges E of order m, each connecting two
vertices belonging to the network. Each edge is thought of as a straight length of road
that is not intersected unless at an endpoint, which in this context is a road intersection,
and a vertex in V. This naturally defines the graph as planar [4] which fits this scenario
as we are considering topologies in a two dimensional plane. The boundary of the car
park is B ⊂ V , which surrounds the rest of the graph and is a closed loop. The road
network itself is the complement of the boundary subset R = V \ B. One edge connects
a vertex belonging to B to a vertex belonging to R and is associated with the car park
entrance and exit. R is defined as a tree meaning it doesn’t contain any closed loops.The
way we are going to arrange car parking spaces along these edges will be that they are
arranged in double stacked rows of cars parked perpendicular to the road direction. This
assumption is motivated similarly to 1.1.4:

“that nose in parking (i.e.parking 90 degrees to the road) provides the most
efficient packing of cars. Using this we assume that, along each linear segment
of the road network, we always attempt to park nose in and make no account for
other types of parking tiling patterns such as parallel parking or herring-bone.”

2.2 How the road network is created and expanded

The algorithm this approach aims to create is one that grows the road network one vertex
at a time from the starting vertex connected to the entrance. The way the algorithm
grows this network is that it first chooses a vertex belonging to the road network R and
then “branches” out from this vertex. The way the algorithm “branches” out from this
vertex is by choosing some distance and some angle relative to the vertex and creating a
new vertex at this location that is then added to the road network tree. This new vertex
increases the roads length and adds a new edge to the edge set E. This process is iterated
until some terminating condition is met, such as the car park being entirely accessible
from some part of the road. We can break this process down into two main steps: 1.
Choosing the vertex we should branch out from, and 2. How we branch out from the
chosen vertex. For both of these steps, there will be a cost associated with expanding the

8

road network in a specific way, this will be what is optimised over to determine optimal
configurations.

For this approach, we are choosing to branch out from any given vertex at some ele-
mental length l. The motivation behind this is that l can represent the length of one
parking spaces. This means that there should be little wasted space when branching as
in between two vertices there is the exact amount of distance needed to fit a row of car
parking spaces. For example, by considering the scenario where you may branch out from
a vertex at 90 degrees relative to that vertex’s connected edges, there would be no loss in
the amount of potential car parking space if the distance between the vertex and any of
its neighbouring vertices is double the elemental length l.

2.3 Attributes of the road network to consider

As we are not the designer of any specific car park, we do not have access to the specific
details that may be associated with any individual endeavour. When we are considering
how we should construct an algorithm that will penalise worse configurations of vertices,
we will have to ensure that the attributes we consider can be general enough to apply
to any car park. These ways of assessing the car park will be motivated by the general
intuition any designer has as to what would be desired traits for the network.

Since we are growing the network vertex by vertex, we want to ensure that the way
we assess a desirable configuration should be done at every iteration of grow, and for one
individual vertex at a time. So the traits we would want to consider desirable for the
network must be relative to any individual vertex.

One such trait when assessing which vertex to grow the network from could be the amount
of road around the vertex. The motivation behind this would come from the inherent need
to explore; an area with less road is an area less explored. This idea of using the amount of
the network around a vertex to guide its exploration can be compared with the algorithm
for the Rapidly Exploring Random Tree [5]. The metric for the amount of road could
be thought of as a physical area of road within a bounded area around a vertex; but for
our purposes counting the number of vertices within some bounded surrounding area will
fulfill the same objective. This area would likely have a radius that is a multiple of the
elemental length l as to encompass the adjacent road up to the last vertex.

Another trait that could be considered is whether moving into any given area of the
car park provides any benefit; if there is no new parking space in a given direction, why
go there? In a similar fashion to the above, we can consider an area that has a radius
of some multiple of the elemental length l and determine how much space in that area is
already accessible from any road. This area would be offset from the vertex being con-
sidered as we want to see the benefit of going in that offset direction. This offset would
be of length l away as we will be growing by that distance from any vertex. (This leads
to an area covering some radius that is a multiple of l around every point lying along the
perimeter of the circle surrounding any given vertex with radius l).

An aspect that could be considered, that is inspired from the idea of the root of a plant
as mentioned prior, is the distance from the entrance of the car park. You can imagine
that as the root system expands, it will spread out in a combined front more-so than
searching depth first. This can be taken into consideration also with the way we choose

9

to grow the road network. As the roads move further and further from the entrance of
the car park, the distance that a road is from the entrance could reduce the likelihood of
it being considered in comparison to a road closer to the entrance. This distance can be
taken into consideration as the length of the shortest path from the entrance to any given
vertex, but could also be a function of the amount of road currently in the car park or
the dimensions of the car park.

A cost inspired more so by actual road networks is taking into consideration the number
of intersections a vertex has. The more intersections any road network has, the more the
road network branches creating wasted space. In some cases this may be ideal, but for the
sake of creating a car park with as much space as possible, the less road the better. This
means that we may want to consider the number of other vertices connected to a given
vertex, and its surrounding vertices, to determine if we may branch from it; providing a
preference to those vertices which are not at an intersection and are instead at the leaves
of the road network tree.

How much overlapping area there is of car parking bays along any edge, taken into con-
sideration in 1.1.4, can also be applied to our approach. Ideally, there would be as little
overlap between the areas of car parking bays as possible as this would increase the amount
of wasted space generated when branching out from a vertex. With this motivation, this
area can be defined as the total area of car parking space from a potential branching edge
that is overlapping the already placed parking space area. This loss is only present when
branching out at an angle that is not at 90 degrees to the chosen vertex’s other connected
edges.

These five metrics for assessing any given vertex’s “fitness” to be grown from can be
summarised as:

1. The number of road network vertices around a vertex.

2. The amount of unfilled space accessed by moving in any given direction from a vertex.

3. The distance the vertex is from the entrance of the car park.

4. The number of vertices connected to a vertex and its surrounding vertices.

5. The amount of area wasted when branching out from a vertex at an angle not at 90
degrees to the vertex’s other connected edges.

2.4 Cost function for growing network

From the above attributes, we can start to construct a cost function for growing the net-
work. This cost function is actually a combination of two other cost functions, the cost
of selecting the vertex to grow from and the cost of how you grow from said vertex.

For the former, the attributes that would make most sense to consider are (1), (3), and
(4) as they are all relative to a given vertex that already belongs to the road network. (2)
and (5) are related to the potential vertices that you could add to the road network by
branching from any given vertex, and therefore make more sense to be considered for the
second cost function that is related to how you choose to grow from a vertex.

10

The first cost function can then be constructed as a weighted sum of these three at-
tributes:

f(a, b, c) = ax1 + bx3 + cx4 for a, b, c ≥ 0

Where x1, x3, x4 are the evaluated values of the attributes (1), (3), and (4) respectively
for any vertex belonging to the road network R.

For the second cost function that determines how we branch out from the chosen ver-
tex, we consider (2) and (5) as stated above. However, for any given way of growing
the road network from a vertex, we also need to reconsider the number of road network
vertices surrounding this new potential vertex; (1). The direction being considered for the
new vertex may be branching into an area where there is already a piece of road nearby.
It is easy to imagine that this may not be ideal which is why there is consideration for
it. (3) and (4) can both be ignored for this potential new vertex as the distance should
be equal for all potential options from a given vertex and similarly for the number of
connections to the vertex.

This means the second cost function can be constructed as the weighted sum of three
attributes:

g(d, e, f) = dy1 + ey2 + fy5 for d, e, f ≥ 0

Where y1, y2, y5 are the evaluated values of the attributes (1), (2), and (5) respectively
for any potential vertex that is being considered from an already chosen vertex in R.

2.5 Simplifying the approach

For this approach, applying it completely as described above generally would be computa-
tionally and logistically challenging. So initially, to determine its efficacy and feasibility,
the consideration of a simplified scenario could lead to promising results given the appro-
priate assumptions that represent the approach fairly.

The below assumptions simplify the problem while still ensuring that the approach is
still representative of the original and not trivial. These assumptions reduce the compu-
tational and logistical complexity of the problem which suits our initial tackling of the
problem.

2.5.1 Boundary of the car park

In the more general case, the boundary is only restricted to be a subset of
the Graph G that is a closed loop. The assumption made here to simplify
the problem is that this boundary is now a rectilinear approximation. The
boundary is composed of straight lines that are connected at right angles to
each other where each lines length is a multiple of the elemental length l. This
assumption can reasonably be made as more simplistic car parks will take this
shape and for the purposes of this simplification, we are willing to sacrifice some
of the models complexity while still allowing it to apply to many realistic car
park configurations. The car park boundary then becomes a more simplified
approximation of a more complex boundary that will have a length and width
that is a multiple of l.

11

2.5.2 How we grow the network

In the more general case defined above, vertices in the plane can be connected
by an edge belonging to the edge set. The angle of this edge relative to some
fixed euclidean axis has no restrictions. The assumption taken by this simple
configuration is that for the rectilinear boundary defined above, branching out
at an angle that is not 90 degrees relative to one of the boundaries is almost
exclusively non-optimal and will lead to wasted space. This means that we can
presume that we are only branching out from four possible directions from any
given vertex – North, South, East, and West. In actuality, as we are branching
out from an already existing vertex, branching back in the direction of that ver-
tex is impossible. This means that for any given vertex we would be branching
out from, there would be at most three potential directions to branch out.

This combined with the prior assumption effectively simplifies the graph to be a
rectilinear grid, as shown in 1. A cell in this grid is filled if it contains a vertex.
This vertex can belong to the road network or the boundary. Two vertices can
then be connected via an edge if their cells are immediately adjacent to each
other in the grid and belong to the same subset of the graph; R or B. We will
also relax our definition of the road network being a tree. We are going to be
optimising a cost function that entirely decides how we may choose to grow the
network, restricting it to not branch in a way that may make a loop is not the
goal of this approach. Instead, we aim to optimise over the parameters of our
cost functions so that our end result does not contain any cycles in the graph
as that would be non-optimal. This means that our optimal solution should be
an acyclic graph, but for completeness it is not a requirement.

Figure 1: This is an example of a rectilinear grid that represents our car park. The blue grid cells
represent cells that are filled with boundary vertices. The red cells represent the vertices belonging to
the road network, where the yellow vertex is also the entrance to the car park. The green cells represent
the car parking spaces that are accessible from the road network.

2.5.3 Representation of a car parking space

The size of car parking spaces in the more general case has a defined width
and height for each car parking space. We then have the elemental length l
that represents the length of a parking space to help reduce wasted space when

12

branching. The assumption made here is that every cell in the grid mentioned
above has a fixed width and height of l. This means that any cell represents
the length of one car parking space. The idea behind this assumption is that as
we are attempting to generate a car park topology, we more so care about the
arrangement of the road network vertices in the plane. This simplified configu-
ration can be viewed more so as an approximation of this topology, similar to
the boundary of the car park. The fixed length and width of a car parking space
is then not an incredibly important factor when generating these configuration.

The generalisation is then that any car parking space can be represented by
an empty cell in the grid adjacent to a cell that contains a vertex belonging to
the road network. This allows us to view the entire grid as a countable amount
of road cells and car parking cells that can then be used to assess performance
and determine approximate road network structures.

The above assumptions, coupled with choosing an appropriate car park boundary size,
will allows us to tackle this problem effectively while being less computationally complex.
The entire car park can be represented as a matrix where each element represents a cell;
a structure very easy to implement. The assumptions made do reduce some of the models
application, but can still be generally applied to determining the efficacy of our approach
of generating a car park configuration. With some effort, this abstraction could be applied
to an approach that considers more realistic or representative scenarios.

It is also useful for us to define in this simplified approach what we may consider to
be optimal. As this approach is relatively simple, finding a construction that we can
define as the most optimal can be done by eye. For our purposes, we will be testing
our algorithms in a variety of circumstances, but specifically the case where we have a
15× 15 grid. The following results can be viewed as optimal as they can contain no more
parking spaces with their exact configuration of the boundary and entrance. They do not
represent the only optimal result, but two very different results that achieve the optimal.

(a) The entrance to the car park is placed at
(0, 7). This result has 81 road network ver-
tices and 144 car parking spaces.

(b) The entrance to the car park is placed at
(0, 7). This result has 81 road network ver-
tices and 144 car parking spaces.

Figure 2: These are the optimal results defined for a 15× 15 grid.

13

2.6 Simplified cost function

Now that we have defined our new simplified approach, we need to adjust some of the
definitions we made earlier. The cost functions we defined earlier can still be applied to
this new simplified approach in much the same way:

1. The number of road network vertices around a vertex can be the number of adjacent
road network cells in the grid for a given vertex.

2. The amount of unfilled space accessed by moving in any given direction from a vertex
can be the number of unfilled spaces now accessible by placing a road in a given cell.

3. The distance the vertex is from the entrance of the car park can now be measured
as the shortest path between the vertex and the entrance along vertices of the road
network.

4. The number of vertices connected to a vertex and its surrounding vertices is then
becomes: the number of the cells that are filled with road that are adjacent to a
vertex or its surrounding vertices.

The main change now is in (5) in our list of attributes from the more general approach;
the amount of area wasted when branching out from a vertex at an angle not at 90 degrees
to the vertex’s other connected edges. As described earlier, in this simplified configuration
we are only branching out at an angle at 90 degrees to the vertex’s other connected edges.
This means that we can effectively ignore this attribute. This only effects the second cost
function relating to how we branch.

2.6.1 Cost function for selecting the vertex to grow from

Now that we have our new consolidated list of attributes that we will use to construct
the two cost functions, similar to how we did before, we need to define them. For these
attributes, we want to consider the values of individual grid elements that represent an
empty space, a car parking space, or a space filled with road. A vertex belonging to the
road network now has an associated grid position indexed by i, j ∈ Z, rij ∈ R. We
define the neighbourhood of a point indexed by i, j to be the set of all indexes that would
be adjacent to the current position:

N(i, j) = {(i, j + 1), (i, j − 1), (i+ 1, j), (i− 1, j)}

We also define all the elements surrounding a vertex indexed by i, j to be the set of all
indexes that would be adjacent to the current position including the diagonally adjacent
elements and (i, j):

S(i, j) = N(i, j) ∪ {(i, j), (i− 1, j − 1), (i+ 1, j + 1), (i− 1, j + 1), (i+ 1, j − 1)}.

First we will consider the first cost function relating to how we select the vertex to branch
from. This cost function considered three attributes x1, x3, x4, the evaluated values of the
attributes (1), (3), and (4) respectively for any vertex belonging to the road network.

We described the attribute (1) under this new simplified configuration before as the num-
ber of adjacent road network cells in the grid for a given vertex. This means that for a

14

given vertex belonging to the road network, rij ∈ R, we want to count the number of
adjacent cells that are also vertices of the road network R. We can define this as:

x1(i, j) =
∑

p∈N(i,j)

h(rp)

Where h is the piecewise function defined as:

h(p)

{
1 rp ∈ R
0 otherwise

The next attribute to consider is (3). This has been defined as the length of the shortest
path between the vertex rij and the entrance to the car park. For a bit of simplification,
the way we calculate the shortest path can be left to the implementation in code. Instead
we will define s(ri,j) to be the shortest path from rij to the entrance of the car park. We
can then define the evaluated value of this attribute as:

x3(i, j) = |s(ri,j)|,

The length of the shortest path from the given vertex to the entrance.

Finally we want to consider the attribute (4) which was described as the number of
the cells that are filled with road that are adjacent to a vertex or its surrounding vertices.
This means that for a vertex we are considering, we want to take the sum over all sur-
rounding vertices and itself, the number of road vertices adjacent to each vertex. We can
define this as:

x4(i, j) =
∑

p∈S(i,j)

 ∑
q∈N(p)

h(rq)

 =
∑

p∈S(i,j)

x1(p).

With these attributes now defined explicitly, we can construct the cost function in terms
of these attributes for a given vertex rij. This cost function will be used to choose the
vertex to grow from as we did with the general approach:

f(a, b, c) = ax1 + bx3 + cx4

= a

 ∑
p∈N(i,j)

h(rp)

 + b|s(ri,j)| + c

 ∑
p∈S(i,j)

x1(p)

= a

 ∑
p∈N(i,j)

h(rp)

 + b|s(ri,j)| + c

 ∑
p∈S(i,j)

 ∑
q∈N(p)

h(rq)

 for a, b, c ≥ 0

2.6.2 Cost function for deciding how we grow from a chosen vertex

Similar to how we redefined the first cost function in this new simplified configuration,
we shall redefine the second cost function for how we grow from a chosen vertex. The
attributes we will be considering for this cost function will be the same as the general
approach, with the exclusion of attribute (5) as explained prior. For these attributes, we
want to consider the values of individual grid elements that represent an empty space, a
car parking space, or a space filled with road as above. We take the definition for the
neighbourhood and surrounding vertices from the previous section:

N(i, j) = {(i, j + 1), (i, j − 1), (i+ 1, j), (i− 1, j)},

15

S(i, j) = N(i, j) ∪ {(i, j), (i− 1, j − 1), (i+ 1, j + 1), (i− 1, j + 1), (i+ 1, j − 1)}.

This second cost function considered three attributes y1, y2, y5; the evaluated values of
the attributes (1), (2), and (5) respectively for any vertex belonging to the road network.
We will be ignoring y5.

We defined attribute x1 in the previous section which was a count of the number of
adjacent cells that are also vertices of the road network R. y1 is much the same except
that we are now considering a potential new vertex adjacent to an element of the road
network instead of an already existing rij ∈ R. This however does not effect the way we
will calculate the evaluated value of this attribute, meaning:

y1(i, j) = x1(i, j) =
∑

p∈N(i,j)

h(rp)

Where h is the piecewise function defined as:

h(p)

{
1 rp ∈ R
0 otherwise

The next and final attribute to consider is (2). This was described as the number of
unfilled spaces now accessible by placing a road in a given cell. However, as we are cre-
ating a cost function that we aim to minimise, this definition does not suffice. This is
because we would under this description want to maximise the amount of empty space we
are now able to access. Instead, we can change the definition to be the number of filled
spaces surrounding a vertex before moving in that direction. This gives us a measure of
how many spaces are neither accessible from a road, nor a vertex belonging to the road
network. This is intuitively something we would aim to minimise, as this gives a natural
tendency to move into unexplored areas of the car park.

With this updated definition, we can define the following to reflect an evaluation of this
attribute of the network:

y2(i, j) =
∑

p∈N(i,j)

k(rp)

Where k is the piecewise function defined as:

k(p)

1 rp ∈ R
1 ∃ t ∈ {rq | q ∈ N(p)} such that t ∈ R
0 otherwise

With these attributes now defined explicitly, we can construct the cost function in terms
of these attributes for a potential new vertex at index i, j. This cost function will be used
to choose how we grow from a vertex that has been chosen through the use of the previous
cost function. Due to the simplified approach we now take, this is one of at most three

16

potential directions. The cost function is then defined as:

g(d, e) = dy1 + ey2

= d

 ∑
p∈N(i,j)

h(rp)

 + e

 ∑
p∈N(i,j)

k(rp)

=

∑
p∈N(i,j)

dh(rp) +
∑

p∈N(i,j)

ek(rp)

=
∑

p∈N(i,j)

dh(rp) + ek(rp) for d, e ≥ 0

2.7 Growing the network

With the cost functions for choosing the next vertex constructed, we can now formalise
how we will grow the road network. The road network will be expanded one vertex at
a time, iterating periodically. This process will be done in two parts as described prior;
first choosing a vertex to grow from and then deciding in what direction we grow. Below
we will explain the process for both steps algorithmically.

We also must consider when we will decide to stop growing the network. The terminating
condition for the algorithm, and subsequently when the car park will be considered filled,
is when all grid cells are either a vertex belonging to the road network R or are grid cells
in the neighbourhood of a vertex belonging to R. These conditions will be checked at the
beginning of every iteration and if met will cause the algorithm to terminate. Once we
have terminated, we will output the entire car park grid as our finished configuration.

2.7.1 Choosing a vertex to grow from

The algorithm for growing the network will at every time step first select a vertex to
branch from. This will be done using the first cost function we defined with a given set
of parameters a, b, c. This first cost function considers attributes that we have chosen so
that a smaller cost function value would seemingly lead to a more optimal choice of vertex
to branch from. This means that for determining the best vertex across the whole car
park, we will have to minimise this cost function over all vertices r ∈ R. An explanation
of how this will be done practically will be explained in section 2.9. This will then give
us a position i, j in the car park grid that we can then pass onto the next step of the
algorithm;“branching out” from the chosen vertex in one of three directions.

Importantly, there are a few cases that we should consider that would cause issues with
this algorithm. The main issue being that suppose the vertex that minimises the cost
function cannot be expanded from. This could happen if all of the grid cells in the neigh-
bourhood of a vertex are vertices that belong to the graph G. In this situation, the
solution we will take is to take the vertex that has the next smallest evaluated cost value.
If this vertex also falls into the same situation of being surrounded by graph vertices,
then we repeat the steps prior. This will either lead to the next least costly vertex being
selected to branch from, or will be a situation which is a terminating condition of the
algorithm and would have already been checked.

Another issue to consider is that of two vertices having the exact same minimum cost

17

value. We want this approach to be deterministic meaning that we must have a consis-
tent approach to tackling this situation. The approach we will take is to simply choose
the first vertex found with this minimum cost. This keeps this approach deterministic
without any change to the resulting car park grid.

2.7.2 Choosing the direction to grow from a chosen vertex

After the first cost function has been utilised to determine the vertex that should be used
as the “branching” vertex, we want to utilise the second cost function we defined to choose
the direction in which we grow the road network. This takes place at the same iteration
step as the first cost function. The first cost function will have produced a position in
the grid i, j. This position is what will be given to the second cost function which will
calculate the cost for each branching direction. Similar to the first cost function, we have
designed this function specifically to consider attributes of the road network so that the
smaller the evaluated value, the more optimal the branching direction. We minimise over
all of the potential branching directions to determine the most optimal choice. For this
step of the algorithm we now only need to consider three potential vertices at most and is
therefore far less computationally demanding. This will lead to an implementation that
is explained further in section 2.9. Once we have chosen the direction in which we wish
to grow the road network, we then add a vertex to the road network R at the appropriate
position in the neighbourhood of the previously chosen vertex. Edges are then also implic-
itly added to the edge set connecting the newly added vertex to all adjacent road network
vertices. After this step the algorithm then repeats until the terminating condition is met.

Similar to the previous part of the algorithm, there are cases that we must consider
that may cause an issue and are not obviously dealt with. This comes in the form of what
branching directions we consider. We only want to consider cells that are able to be filled
with a vertex and be added to the road network. This means that the cells adjacent to the
chosen vertex that are considered must not be vertices belonging to the road network R.
However, this does not cover situations that occur at the boundary of the car park. This
means that we must be more restrictive and say that the cells in the neighbourhood of
the chosen vertex must not be vertices belonging to the graph G. We also must consider
if there are any possible branching opportunities from a given vertex. This issue is dealt
with due to the conditions met by the previous part of this algorithm; the neighbourhood
of the chosen vertex must have an empty cell that is not filled with vertices belonging to
G. If this condition is met then there will always be a potential branching direction.

2.8 Optimisation of parameters

With a formalised and simplified approach to how we attempt to generate configurations
of car parks, we now need to formalise our approach to optimising. Previously we ex-
plained that the simplified configuration now gives us a countable amount of cells that
can be either a car parking space, or a piece of road. When we are optimising, we want
to maximise or minimise over one of these attributes. This is intuitive as a car park
with as many car parking spaces as possible is what we are aiming to achieve, but is
also equivalent to minimising the amount of road in the car park. This is equivalent
due to our terminating condition being that the car park must be filled with car parking
spaces or with road. The inclusion of obstacles would not change this as long as the obsta-
cles were kept in the same consistent locations across different executions of our algorithm.

For our approach, we have chosen to maximise the number of car parking cells. This

18

means that we are wanting to maximise over the integer number of cells in the car park
grid that are adjacent to a vertex belonging to the road network R. We could have al-
ternatively minimised over the number of cells that contained vertices belonging to the
road network. These two approaches would achieve the exact same objective, but may be
preferred depending on the chosen method of optimisation.

With a calculable value that we can use to assess the performance of our car parking
grid, we can use this to optimise over our parameters. For this approach we have two cost
functions that take in total four parameters that we need to optimise over to determine
an optimal configuration. These four parameters are continuous real numbers that are
only required to be non negative.

2.8.1 The issue of optimisation

With the details of our optimisation problem considered, we now encounter several issues.
In most optimisation problems we have an objective function, here this function is the
number of car parking spaces. This objective function is what we want to minimise or
maximise. Objective functions are usually continuous differentiable functions that are
taken advantage of by several different optimisation schemes and algorithms to reach a
minimum or maximum value. The issue with our objective function is that it is integer
valued and non continuous. This means that several optimisation schemes that have been
used in previous studies [1] such as the Nelder-Mead simplex algorithm1 or genetic algo-
rithms do not effectively tackle this problem. This is because they quickly find themselves
in local minimum values and terminate without considering a significant amount of the
parameter space. This is because the integer valued objective function may sometimes
change based on a small change in the value of the parameters, or may not change until
a large change is made to the parameters. This quickly leads to minimum values that are
not close to or representative of a global minimum value.

Other schemes were considered that were used by other studies such as [2], mainly MILP
(Mixed integer linear programming) [7]. MILP however more so applies to integer valued
parameters instead of being focused on integer valued objective functions. This means
that in our approach, where we define all the parameters to be non-negative real values,
this optimisation scheme does not seem as applicable.

This leads to a situation where our optimisation schemes seem limited or would require
extensive manipulation of already existing schemes to accommodate our situation. We
could also potentially change our objective function to attempt to find something that
may be more easily optimisable at the cost of our simplicity.

2.8.2 The brute force approach

We want to be focusing on the algorithm we implement more so than the optimisation
problem it may represent. The issues above lead to a very obvious but seemingly inefficient
approach encompassed by the idea of brute force. This optimisation scheme would simply
iterate over the entire parameter space to find a minimum value. This approach in most
scenarios is incredibly inefficient and would be unrealistic in most application, with the
only main benefit being assured of a global minimum value at termination. However, as
we have simplified our problem quite dramatically, the computational complexity of such
a scheme is not too unreasonable. The only relaxation we would practically have to make

1Implemented using the MATLAB inbuilt function “fmin”[6].

19

is to bound the maximum values for certain parameters as the actual parameter space is
infinite. This is because we defined all the parameters to be non-negative and bounded
below by 0, but none are bounded above. So this scheme would instead iterate over an
appropriate percentage of the parameter space to find a global minimum. In our actual
application of this, we will be finding the minimum over the amount of road rather than
the maximum over the amount of parking space as described prior. Under this scheme
the two different approaches to evaluating our objective function are equivalent.

Another important factor for this brute force approach is that the way our cost functions
are designed means that the individual attributes are weighted based on the parameters
we provide. These attributes are summed to provide the value that we use to assess a
vertex. This leads to the individual values of each attribute not being incredibly relevant
to the end result of the algorithm. Instead, the relative weighting between parameters
is what will provide difference in results. This means that we may also consider less of
the parameter space as we can already guarantee certain results will be identical. For
example, say we provided the values a, b, c, d as the parameters to our two cost functions.
We can guarantee that the result of this execution of the algorithm will be identical to
the algorithm executed with parameters 2a, 2b, 2c, 2d as the relative waiting is identical.

The amount of change we make to each parameter when iterating over the parameter
space is also non-trivial. We cannot change each parameter an infinitely small amount so
we must provide an amount which we should change a parameter at each iteration. This
will be the main increase in execution time as the smaller the amount we change each pa-
rameter by during iterations, the more times we execute the algorithm. When practically
applying this scheme, multiple different amounts that we change the parameters by will
have to be considered.

With this in mind, we can practically apply this approach to determine the parame-
ters that maximise the number of car parking spaces generated using our algorithm.
There is no guarantee that we will be finding the global maximum through this approach,
but for the purpose of analysing the efficacy of this type of algorithmic approach, this
optimisation scheme should suffice.

2.9 Explanation of code

With the simplified approach and our approach to optimising over our objective function
defined, we can now execute our algorithm. The program written that executes this
approach is in the appendix of this report. The program was written in python version
3.6.3 [8]. Python was chosen as I personally have experience using the development
language and are familiar with its libraries. The libraries that proved must useful where
NumPy [9] and SciPy [10] which both provided useful utilities to assist with creating our
program. The program outputs its results as an image representing the car park grid.

2.9.1 Using “layers” to improve performance using memoisation

In the program, I made the car park itself a class. This class has several attributes that
assist in keeping track of the current state of the car park at any iteration. Its member
variables include the car park grid, implemented as a matrix, and the width and height
of the car park grid. This class also has methods that update the car park when a new
vertex is added to the road network.

20

Previously mentioned attributes that are computationally demanding to calculate at every
iteration have been dealt with by incorporating in the idea of “layers”; a use of memoi-
sation2 . The different layers are all copies of the car park grid implemented as a matrix.
The elements of the matrix are different depending on the layer. For example, there is
a distance layer where every cell that contains a vertex belonging to the road network is
an integer value representing the distance of the shortest path from the position to the
entrance of the car park. This allows us to easily determine the distance of a new vertex
added to the road network by simply taking the largest distance layer value in the vertex’s
neighbourhood, increasing the distance by one.

1 de f updateDistance (s e l f , i , j) :
2 adjacentCount = 0
3 minDistance = math . i n f
4 f o r m in neighbourhood :
5 i f (i+m[0] >= 0) and (j+m[1] >= 0) and (i+m[0] < s e l f .w) and (j+m[1] < s e l f . h) :
6 i f s e l f . road [i + 1 + m[0] , j + 1 + m[1]] > 0 :
7 i f s e l f . d i s t anc e [i + m[0] , j + m[1]] < minDistance :
8 minDistance = s e l f . d i s t anc e [i + m[0] , j + m[1]]
9 s e l f . d i s t anc e [i , j] = minDistance + 1

Listing 1: Function for updating distance layer. It also uses the road layer which contains the information
associated with x4 and is implemented in a very similar way to the distance layer.

When assessing the cost of any vertex, we can simply look at the value at that vertex’s
position in the distance layer to find the value of x3. This method of memoisation will
improve performance.

2.9.2 Implementation of the cost functions

Previously we have described our process for implementing our cost functions. Specifically,
we separated out the process into two separate algorithms that use both cost functions
individually to select a vertex to branch from, and then in what direction we branch from
that vertex. However, in this implementation of the algorithm, the two have been com-
bined. Instead of choosing to separate the cost functions, we calculate their sum and use
it as a cost for every branching direction for every potential vertex. This was implemented
as such because the additional computation of calculating the preferred branching direc-
tion is very minimal. This means that on top of calculating the cost of choosing a vertex
to branch from, the cost calculation of each individual branching direction becomes more
insignificant. Combining these two processes simplifies the code without a significant
performance deficit in our implementation. However, choosing to scale up the size of the
potential car park grid would lead to a more significant effect on performance. This issue
however would not seem incredibly relevant as the execution of our algorithm to create
a car park configuration should produce similar results irrespective of the car park size
under the same set of parameters.

Along with this combination of the two cost functions, we are now only considering
branching directions. This however creates some redundancy in our calculation by con-
sidering x1 and y1, both the number of road vertices in their neighbourhood. They are
almost entirely the same evaluation meaning that it shouldn’t cause significant change in
the way we choose to select our new vertex. Because of this we instead only consider the
attribute y1.

The one cost function is then implemented as the weighted sum of the four parameters.

2Although this looks to be a misspelling of memorisation, memoisation is in fact a specific optimisation technique that
I would urge you to look into further https://en.wikipedia.org/wiki/Memoization

21

1 de f co s t (s e l f , i , j , k) :
2 r e turn (s e l f . gridSum (i +1, j +1) ∗ k [0] +
3 s e l f . roadSum (i +1, j +1) ∗ k [1] +
4 s e l f . ge tDi s tance (i , j) ∗ k [3] +
5 s e l f . g e t F i l l e d S p a c e s (i , j) ∗ k [2])

Listing 2: Function for calculating the cost of a potential new vertex. The individual functions inside
this function calculate the attributes y1, x4, x3, y2 respectively

2.9.3 Brute force minimisation of objective function

As discussed before, our approach to determining parameters that maximise our objective
function will be a brute force approach. This approach will iterate at some set interval
over the parameter space, keeping track of the minimum value achieved so far. The way
this has been implemented is to create a new instance of the car park class with the
same dimensions with every new set of parameters. The algorithm is then run over this
car park with the parameters provided, which then produces a deterministic result. This
result is the number of cells that contain vertices that belong to the car park; what will
be minimised.

In the part of the program shown below, the parameters are iterated over where “be-
ginning” refers to the lower bound on the values of the car park; in most cases 0. The
variable “end” refers to the upper bound. The variable “sample n” refers to the number
of values to sample within the range specified, this value if made too large is the most
computationally demanding part of this process. The other variables given to this func-
tion specify the dimension of the car park grid to iterate over and where to position the
entrance on said grid.

1 de f bruteForceMaximisat ion (beginning , end , sample n , c a r p a r k s i z e , entrance) :
2 minimum road = math . i n f
3 r e s u l t s = [[]]
4 f o r q in np . l i n s p a c e (beginning , end , sample n) :
5 pr in t (” p rog r e s s : ” , (q/end) ∗100 , ”%\n”)
6 f o r w in np . l i n s p a c e (beginning , end , sample n) :
7 f o r e in np . l i n s p a c e (beginning , end , sample n) :
8 f o r r in np . l i n s p a c e (beginning , end , sample n) :
9 CarPark = Grid (c a r p a r k s i z e [0] , c a r p a r k s i z e [1] ,

10 entrance [0] , entrance [1])
11 k = [q ,w, e , r]
12 valu = CarPark . i t e r a t e (k)
13 i f valu == minimum road :
14 r e s u l t s . append (k)
15 i f valu < minimum road :
16 r e s u l t s = [[]]
17 r e s u l t s . append (k)
18 minimum road = valu

Listing 3: Function that iterates over the parameter space to find the miminum of our objective function

2.10 Results

The below figures and results will show how this deterministic approach performed under
multiple different situations. The program outputs an image which represents the car
park grid. Every vertex that is coloured blue represents the boundary of the car park.
Any cell coloured red represents a vertex belonging to the road network, where the square
red vertex denotes the entrance of the car park. Edges between vertices belonging to the
road network are drawn as black lines. All green vertices represent a car parking space.
The program used to generate these results can be found in the appendix.

22

2.10.1 Square car park boundaries

Initially the car park grids that were considered were those with a square boundary shape.
For these car park shapes, the entrance was initially placed as central to one axis of the
car park as possible, and was required to be adjacent to one of the boundary vertices.
The brute force approach was run with parameters where the value of each parameter fell
in the interval [0, 1]. The number of samples taken within this interval varied. The more
samples chosen, the longer the time the program took to return a successful result.

An example of one of these results is the following figure. This result was run with a
set of parameters found through the brute force approach. The car park grid size was
15 × 15 and and the entrance to the car park was placed centrally against the bottom
edge of the boundary.

Figure 3: This is the result output from the program listed in the appendix. The car park grid size
was 15 × 15 and and the entrance to the car park was placed centrally against the bottom edge of the
boundary, marked by a square. The parameters used were (0.45, 0, 1, 0) This result has 85 road network
vertices and 140 car parking spaces.

This results merits are visible immediately based on our own intuition of how a car
park may be designed. As described prior, we did not restrict the algorithm to generating
a network that was a tree as that would restrict the logistic freedom of our potential car
park network. The idea behind this was that an optimal car park will be an acyclic graph
inherently. The resulting road network in this example is an acyclic graph. The number
of road vertices is 85 against 140 car parking spaces leading to a car parking space to road
vertex ratio of 1.65. There are lots of straight lines that reduce the amount of wasted
space from having to create an intersection of multiple roads. There are few cases where
a car parking space is accessible from two different road segments that aren’t at a corner.
However, through some mild rearrangement of road network vertices it is clearly possible
to improve and is therefore not the global optimum.

23

This example also highlights one of the issues of this approach that was found from
the results garnered; optimal configurations completely disregarded certain attributes by
setting certain parameters to 0. This issue is discussed more thoroughly in the following
sections.

These exact same parameters were used on the exact same sized car park grid, but with
the entrance position changed. The idea behind testing this was to determine whether we
had found parameters that were not only optimal for a specific configuration, but could
be applied to others. The following shows this test, with the entrance moved several space
to the left.

Figure 4: This is the result output from the program listed in the appendix. The car park grid size was
15×15 and and the entrance to the car park was placed slightly off center against the bottom edge of the
boundary, marked by a square. The parameters used were (0.45, 0, 1, 0) This result has 96 road network
vertices and 129 car parking spaces.

This result is less effective than the previous result with 96 road vertices being present,
leading to a car parking space to road vertex ratio of 1.34. The same characteristics
are visible from the previous result with many straight lines of road segments, but the
road network is much more wasteful by allowing many more car parking spaces to be
accessible in two or more ways. This highlights another issue with this approach; the lack
of consistent results for a given parameter set over different car park configurations. This
issue will also be discussed in section 2.11.1 .

2.10.2 Rectangular car park boundaries

After considering square shaped car park grids, the same process was performed providing
a rectangular car park. Initially the entrance was placed as central to one axis of the car
park as possible and was required to be adjacent to one of the boundary vertices, much
the same as the previous example. The brute force approach was run in the same way
where the value of each parameter fell in the interval [0, 1]. The number of samples taken

24

within this interval varied.

The following example highlights some of the merits and issues of this approach with
the above setup. The parameters were obtained through the brute force approach to
maximisation. The car park grid size was chosen as 10× 21 and the entrance to the car
park was placed centrally against the bottom edge of the boundary.

Figure 5: This is the result output from the program listed in the appendix. The car park grid size was
10×21 and and the entrance to the car park was placed centrally against the bottom edge of the boundary,
marked by a square. The parameters used were (0.25, 0, 0.75, 0) This result has 88 road network vertices
and 122 car parking spaces.

This result illustrates similar merits to the previously shown example in the square
car park grid. It shares almost all characteristics in its long straight lines of road with
few intersections. It is also a tree. The car park contains a total of 88 road vertices and
122 car parking space, leading to a car parking space to road vertex ratio of 1.39. This is
comparable to the previous examples and illustrates that this change of shape has little
effect on the end result of our car park grid after optimising over our parameters.

Another note about this result is that it is almost the exact same. The main change
is that the parameters found were not exactly the same. However, changing the parame-
ters to be the same as the parameters used in the square grid case from prior shows that
this is the same local minima. This highlights the same issue as before relating to the lack
of consistency in the way certain parameters behave over different shapes. For the square

25

and rectangular car park they were virtually the same and both as effective, but moving
the entrance only two places in one direction caused a massive change in the behaviour of
the growth of the car park. This can similarly be illustrated in this example by moving
the car park entrance a few spaces in one direction with the same parameters.

(a) The entrance to the car park was placed
centrally against the bottom edge of the
boundary, marked by a square. This result
has 51 road network vertices and 34 car park-
ing spaces

(b) The entrance to the car park was placed
slightly off center against the bottom edge of
the boundary, marked by a square. This re-
sult has 35 road network vertices and 50 car
parking spaces

Figure 6: This is the result output from the program listed in the appendix. The car park grid size was
17× 5 and and the entrance to the car park was placed at two different locations. The parameters used
were (0.45, 0.0, 1, 0.0)

We then also ran the optimisation approach on this car park and found the appropriate
parameters. The results of running our algorithm with these parameters are shown below.
This also illustrates the exact same issue with the movement of the entrance by a small
amount.

26

(a) The entrance to the car park was placed
centrally against the bottom edge of the
boundary, marked by a square. This result
has 42 road network vertices and 43 car park-
ing spaces

(b) The entrance to the car park was placed
slightly off center against the bottom edge of
the boundary, marked by a square. This re-
sult has 35 road network vertices and 50 car
parking spaces

Figure 7: This is the result output from the program listed in the appendix. The car park grid size was
17× 5 and and the entrance to the car park was placed at two different locations. The parameters used
were (0.75, 0.0, 0.25, 0.0)

This issue will be explored more in the following sections.

2.11 Result conclusions

2.11.1 The issue of parameters not being effective across different grid sizes

This issue was mentioned in the above two example results. An issue this approach suffers
from is that a mild change to the size of the grid or the location of the entrance to the
car park can lead to very different results. This is illustrated in both examples showing
that the issue is not isolated. By running the parameter optimisation again on this new
configuration, more optimal parameters can be found. The issue with this approach is
that we are ideally trying to generate candidate car park configurations, meaning we want
to find many potential candidates that would be optimal for a given car park topology.
This means that if some mild change to any part of the configuration causes a need to re-
optimise over our parameters, this approach becomes wildly inefficient as it is too volatile.
If however a few sets of parameters could be used to effectively generate multiple optimal
solutions in a variety of cases then this approach would become increasingly effective.

2.11.2 Certain attributes being ignored

This issue was also highlighted by all the example results above. The parameter sets
generated from our optimisation approach had several of the parameters being assigned
the value of 0. This effectively means that most optimal results took no consideration of
several attributes we hope would effectively lead to some form of optimal configuration.
Mainly, the attributes referring to the distance a new vertex is from the entrance of the
car park and the number of road network vertices connected to a vertex were ignored.
This means that our approach does not appropriately take them into consideration when
assessing the cost, and a reevaluation of the structure of our cost function may lead to
improved results. It could also mean that the attributes we were considering in fact have
very little effect on the design of an optimal car park. If the later was to be true, removing

27

the calculations associated with these attributes would lead to improved performance with
little to no change to our end result.

2.11.3 Overall approach conclusions

The car park grids produced from this approach describe a set of potential car park
configurations that could be optimised further to achieve an optimal configuration. The
car park grids produced from our optimisation were close to being optimal, where the
optimal could be visibly observed from our own intuition as being a few car parking spaces
different from our result. This means that this approach does generate candidate car parks
that could be optimised through the approach of optimising over road networks designed
in [1]. However, the issues described above lead this result into being too volatile and
inefficient to be applicable to larger car parks or car parks with more complex boundary
network topologies; mainly due to having to reevaluate the parameters sets for any change
made to the car park configuration. Significant changes to the way the cost function is
evaluated for this approach to not be wasteful, due to certain attributes of the car park
grid not being effective at finding an optimal configuration, may be necessary to improve
upon this approach.

3 The Stochastic Approach

This approach will now be taken to explore the same problem tackled by the determin-
istic approach and will also be aligned with 1.1.4, with the idea of focusing on the road
rather than the packing of the cars and how they may be tiled or patterned. In 1.1.4,
the assumption was that the designer would be able to select specific candidate car parks
for consideration based on intuition. Instead, we will aim to develop an algorithm that
develops these candidate car parks. The algorithm will aim to grow the network of roads
itself from a starting point to fill the space.

Unlike the previous deterministic approach, this approach will be stochastic. The idea
being that instead of adding roads that minimise a cost function, we will instead define
a set of rules that will be used to decide whether a road should be placed in a particular
area. Similarly to the previous approach, two separate sets of rules will be used for this
process; one for choosing the road we branch from and one for determining how we branch.
This then produces a subset of the potential ways of placing a new piece of road, which is
then used to randomly select a piece of road to add to the car park. The network should
stop growing once it has filled the space completely with either road or car parking space.

This approach is motivated similarly to the previous approach, with the added moti-
vation of our own intuition. The previous approach did not encode our knowledge of how
a car park should look from our perspective, to provide it with more freedom. This ap-
proach will instead have less freedom to choose but, through random sampling and a set
of rules that encode our beliefs, should produce potentially optimal candidate car parks.

This approach will define the road network in the exact same way as the previous ap-
proach. This approach will also be considered in the context of the simplified configuration
from the previous approach. This means that we already define the car park as a grid
of cells, filled with vertices belonging to the graph G. Two vertices are connected via an
edge if they are adjacent to each other and belong to the same subset of the graph, R or
B. There are differences in terms of how we choose to grow the network, which is what

28

will be described below. However, the structure of our simplified car park is identical.
We do make the added requirement that the road network must be an acyclic graph; a
tree. This added requirement is motivated similarly to the previous approach, but will
explained in the following sections.

3.1 Explaining how we grow

The way we choose to grow the road network in the deterministic approach is very similar
to how we will grow the network with this approach. The only difference between them is
that we are not incorporating a cost function into this approach that we will optimise over.

This means that we can presume that we are only branching out from four possible
directions from any given vertex North, South, East, and West. In actuality, as we are
branching out from an already existing vertex, branching back in the direction of that
vertex is impossible. This means that for any given vertex we would be branching out
from, there would be at most three potential directions to branch out. This aligns with
the previous approach.

The process that will replace the cost function minimisation is the idea of using a rule
set that must be followed for a given vertex to be considered as a potential point to be
branched out from, with another rule set for determining how we branch. This effectively
creates a subset of the potential branching opportunities. A random value is then chosen
from this set of vertices to determine the next vertex added to the road network. The
random way in which this vertex is selected is not trivial and will be explored in section
3.5 .

3.2 Formalising the rule sets for considerable new vertices

With a definition of our simplified car park for this approach, we can move onto determin-
ing what factors could be used to help construct our rules. These rules should disclude
certain vertices from consideration as the next vertex to be added to the road network.

Initially, there are more obvious factors that should be avoided for a car park to suc-
cessfully grow. We need to ensure that the cell we are choosing to branch from is filled
with a vertex belonging to the road network. We also need to ensure similarly to the
previous approach that this vertex can be branched from, and is not surrounded by other
road vertices.

Now, the more difficult set of rules that need to encode our intuition are defined in relation
to how we branch from a vertex that follows the rules above. One of the more obvious fac-
tors should be whether the branching direction is already a vertex belonging to the graph;
we can’t add a vertex at a position where there is already a vertex belonging to the graph.

Another useful rule may incorporate the idea of only adding vertices that may access
potentially inaccessible areas of the car park. This makes sense as if a newly added road
accesses no new areas of the car park, then it is adding no benefit. Since this is now a rule
that discludes certain vertices from consideration as the next potential vertex to be added
to the road network, this attribute cannot be maximised. We instead can formalise this as
a potential new vertex must access at least one previously inaccessible cell in the car park.

When we consider optimal car parks, we consider those with ample space in between

29

roads that can be filled with car parking spaces. How can this kind of behaviour be
encoded into rules that we can apply to how we branch? One attempt at doing this is to
require that no potential new vertex being added to the road network can be adjacent to a
road vertex, excluding the vertex it is branching from. This would then effectively create
a buffer of empty car parking spaces around any new potential vertex. This condition
would also ensure that the road network would be a tree which is both useful and necessary.

Finally, another rule that could be considered is one that is based on our analysis of
the previous approaches results and our own intuition. A car parking space should only
be accessible from one road. The results of the previous approach were improved the fewer
spaces were accessible in multiple ways. However, this is sometimes unavoidable due to
corners and other such intersections. What we can guarantee is that no space should be
accessible in more than two ways, as there is no possible benefit or necessity for this. This
can be encompassed into another rule that forbids branching out from a vertex in a given
direction if doing so would make a car parking space accessible in more than two ways.

These ideas can now be consolidated into the sets of rules that must be followed for a
given potential vertex to be considered. We define the neighbourhood of a point indexed
by i, j to be the set of all indexes that would be adjacent to the current position:

N(i, j) = {(i, j + 1), (i, j − 1), (i+ 1, j), (i− 1, j)}

With the above definition, we can formally define the rule sets as follows:

For any vertex v ∈ V that is being considered as one that could be branched out from:

1. v = rij ∈ R for some i, j.

2. There exists p ∈ N(i, j) such that rp /∈ R.

For any potential vertex to be added at position i, j to the road network, adjacent to a
vertex that follows the above rules at position m,n:

1. rij /∈ R.

2. There exists p ∈ N(i, j) such that for all q ∈ N(p), q /∈ R.

3. For all p ∈ N(i, j), p /∈ V unless p = (m,n).

4. For all p ∈ N(i, j), |{x | x ∈ N(p), rx ∈ R}| ≤ 1.

3.2.1 Completeness and relaxation of rules

An issue that has unfortunately arisen from these definitions is that of completeness. The
rules defined above can lead to a situation where the car park may find itself in a situation
where it can no longer fill any more unfilled spaces, even though the car park itself is not
full. There are two rules that cause this, rules (3) and (4). The car park may find itself in
a situation where the only possible way to fill a space may involve placing road adjacent
to an already existing road network vertex, or choosing a road network vertex that would
cause a car parking space to be accessible in more than two ways.

Because of this, we choose to let these specific rules be relaxed under these circumstances
so that the car park may be filled. This shouldn’t have any major effect on the end result
of the algorithm as the more optimal results will not suffer from this problem.

30

The relaxed versions of rule (3) will allow the new potential vertex to be adjacent to
the boundary, formalised as the following:

For all p ∈ N(i, j), p /∈ R unless p = (m,n).

This definition may still need to be further relaxed for completeness in certain situations,
meaning that the even more relaxed version of this rule is to ignore it completely. The
relaxed version of rule (4) is much the same; ignore the rule for completeness.

3.3 Filtering the candidate vertices

With our rules now properly defined, we can generate a set of road network vertices that
should reflect more of our beliefs in what a car park configuration may be. However,
these rules alone would lead to many potential vertices at any iteration of our algorithm
to choose from. Many of these potential vertices may also not be the most optimal choice
when considering our beliefs. This motivates the idea of filtering this subset of potential
vertices based off of some attributes relating to the current state of the road network.
Vertices would be removed from consideration if they don’t minimise certain attributes,
filtering our set of vertices.

A particularly useful attribute could be the amount of filled space in the neighbour-
hood of a potential vertex, as we are accessing fewer new parking spaces. The more filled
space, the less the potential benefit from selecting said vertex. This means that we can
filter our subset of potential vertices by selecting those that minimise the amount of filled
space in their neighbourhood. This can be formally defined as:

m(i, j) =
∑

p∈N(i,j)

k(rp),

where i, j is the position of the cell being considered as a potential vertex, k is the piecewise
function defined as:

k(p)

1 rp ∈ R
1 ∃ t ∈ {rq | q ∈ N(p)} such that t ∈ R
0 otherwise

Another attribute that may be useful for similarly assessing a potential new vertex’s
benefit could be the distance that vertex is from the entrance of the car park. This caries
less immediate benefit, but similarly to the deterministic approach this attribute is in-
spired by systems such as the root system of a plant. As the root system expands, it will
spread out in a combined front more-so than searching depth first. This can be taken
into consideration also with the way we choose potential vertices. As the roads move
further and further from the entrance of the car park, the distance that a road is from
the entrance could reduce the likelihood of it being considered in comparison to a road
closer to the entrance. This can be formally defined as:

n(i, j) = s(ri,j) + 1 where ri,j is the vertex being branched from.

Where s is the function that returns the shortest path from the given vertex to the en-
trance of the car park.

31

With these two attributes filtering our potential vertices, the subset of potential ver-
tices should now be more optimal. Often there would only be one remaining vertex in a
smaller car park configuration, but in larger grid sizes this may not be the case. If the
vertex set after filtering contains more than one element, a vertex shall be chosen from
this subset probabilistic with a uniform distribution, making each potential vertex left
equally likely.

3.4 Uncertainty and how we can use it in our filtering of potential vertices

We have now defined the rules that produce potential vertices to be added to the road net-
work. Along with this we have used several attributes, that would seemingly be beneficial
to have for a potential new vertex, to whittle down the number of vertices further. Both
of these processes were fuelled based on our beliefs of what a car park should be to be op-
timal. But are these beliefs fact? We cannot be certain. This is why in our filtering of our
potential vertices, we should ideally try to incorporate some uncertainty in our decision.
We can do this in a variety of ways, but a simple approach to adding uncertainty into our
process would be to randomly allow vertices that would be considered less optimal by our
filtering to “pass through” the filter and still be considered as a potential vertex. This
adds more diverse options to our set of potential vertices for the algorithm to choose from.

The way this filtering could be controlled is with some level of randomness that is as-
sociated with both the distance attribute and the filled space attribute considered in our
filtering. This then encodes the uncertainty in both of these attributes. The values that
should be associated with how random we make this process are not trivial. However,
with some idea of how much uncertainty we may want to encode into each step of the
filtering process, we can give every vertex that is not found to be most optimal some
amount of probability to pass through the filtering steps.

Another way to implement some uncertainty could be in our preference over a direc-
tion in which the car park chooses to grow. For example, we may prefer our car parks to
grow horizontally more than vertically. This preference can be implemented with some
level of randomness that would guide the growth of our road network. This could be
done by associating some probability with all vertices that are branched out in specific
directions – determining how likely the vertex is to be selected as a potential vertex.

These considerations should then give the algorithm the “freedom” to be more stochas-
tic while also allowing us to control the process. This can be implemented by providing
parameters to our algorithm that specify the way in which we choose to randomise our
growth. This can be formalised with the following:

1. s ∈ R, 0 ≤ s ≤ 1 is the parameter that represents the probability of a vertex that
does not minimise the function m being allowed to pass through the filled space filter
described above.

2. d ∈ R, 0 ≤ d ≤ 1 is the parameter that represents the probability of a vertex that
does not minimise the function n being allowed to pass through the distance filter
described above.

3. h ∈ R, 0 ≤ h ≤ 1 is the parameter that represents the probability of the set
of potential vertices that are horizontal in their branching direction being chosen

32

instead of those that have a vertical branching direction. This would split the set of
potential vertices.

These parameters will then need to be provided for this approach to be executed. This
then gives us a set of parameters, similar to the previous approach, that we can attempt
to optimise over. This will be discussed further in section 3.7.4 .

3.5 Growing the network

The road network will be expanded one vertex at a time, iterating periodically as the
previous approach did. The main difference to this approach comes however in the process
of analysing the next most optimal vertex to add to the road network. This approach will,
at every iteration step, determine all of the potential vertices that could be based that
follow the rules we defined prior. This set of potential vertices will be a set of positions
of cells in the car park grid defined as:

{(i, j) | (i, j) ∈ N(r), where r ∈ R, r and (i, j) follow the rules defined prior}

This subset of the road network R is a set of all possibilities without consideration for
other attributes that may benefit an optimal configuration. First we split the set of po-
tential vertices into two subsets based on their branching direction. One of these subsets
is randomly chosen and is kept as our set of potential vertices. This subset is then filtered
by removing potential vertices that are less optimal through the attributes we defined
above. Every potential vertex that would have been discluded through this process has
a probability of passing through the filter that is parameterised by s, d, h defined in the
previous section. After this filtering process, a position is randomly selected from the
remaining potential vertices with a uniform distribution. A vertex is then added to the
road network at this position, adding edges to the graph that connect the new vertex to
all adjacent road network vertices. This process is then repeated.

This repetition of the algorithm must then also have a terminating condition. Similar
to the previous approach, the terminating condition for the algorithm that grows the
network will be when the car park is considered full. The car park is considered full when
all cells in the car park grid are either filled with road network vertices, or are in the
neighbourhood of a road network vertex. This condition will be checked at the beginning
of each iteration of the algorithm and will stop the execution if found to be the case.
After terminating, the car park grid will be returned as our finished configuration.

One issue that is important to highlight is in our splitting of the set of potential ver-
tices based on branching direction. The issue with this is that there may be a situation
where we have no potential vertices for branching in a given direction, meaning that one
of the subsets will be empty. This subset should never be chosen as a possibility. There-
fore our solution to this issue is to default to choosing the non-empty subset if one is empty.

In this process, we also need to consider the relaxation of rules for completeness as de-
scribed prior. There are two specific rules that were defined that may need to be relaxed
for the algorithm that grows the road network to successfully terminate; rules (3) and (4).
Importantly, we should formalise when we should be relaxing these rules. This can be
illustrated rather simply; if the set of potential road network vertices is empty, reacquire
the set of potential vertices with rule (3) relaxed and rule (4) ignored. This first step of
relaxing our rule set changes the above rules in this way as they are the less significant
rule changes that would allow for the car park to terminate in certain situations. If the

33

above relaxation of the rule set still leads to a set of potential vertices that is empty,
then reacquire the set of potential vertices with both rules (3) and (4) ignored. This final
relaxation is more extreme as it now breaks our definition of the road network being a
tree, but this problem will be dealt with in section 3.7.3 . These two steps for relaxing
our rule set will allow the algorithm to always terminate.

3.5.1 Pruning the road network

Fortunately due to our choice of rules in how we choose specific cells as potential new ver-
tex location, we have already dealt with many issues that would require a specific solution
to be defined. However, an issue that would not stop the algorithm from terminating, but
would lead to less optimal results consistently, is caused by our inclusion of uncertainty.
This inclusion of uncertainty into our process should ideally allow the algorithm to be
less constrained, but still guided by our beliefs. This, however, may lead to many small
changes to the road network which may prove unnecessary after the car park grid is fin-
ished. For example, in the following, we can see that the algorithm randomly chooses to
add a road network vertex to the side of a straight line of road network vertices, creating
an intersection. This path however is never continued and is ignored. As the car park
grid is filled, this vertex is completely unnecessary and could easily be removed without
changing the number of accessible car parking spaces.

Figure 8: This is an example of an optimal car park, that has multiple small changes to the road network
that would make it less so. These road vertices are marked with a star. These vertices would be the
vertices removed through the cleaning process.

This is where we can introduce the idea of “cleaning” our road network after it has
been filled. After the algorithm terminates, as the car park grid has been filled, we can
run a separate algorithm that removes unnecessary road network vertices. Choosing these
vertices however is not trivial as we do not want to remove access to car parking spaces,
or break off a road segment so that an area of the road network has no direct path to the
entrance. Vertices that are able to be removed have to meet the following criteria:

For a vertex rij ∈ R:

1. All car parking spaces in N(i, j) are adjacent to other road network vertices.

2. removing rij from the road network must not cause any other vertex to become
inaccessible from the car park entrance.

34

How both of these attributes should be considered practically is a choice we must make,
and will be explored in section 3.7.3 .

3.6 Simulation

Unlike the previous approach, we don’t have a cost function that we are trying to provide
parameters to optimise over our objective function. Our objective function is the same as
defined in the previous approach and will be practically implemented in much the same
way; minimising the number of road vertices. With this approach now being stochastic,
the results we obtain from any given set of parameters may be different. This means
that to determine the best result from a given parameter set, we must generate the car
park through the above algorithm multiple times. We would then return the result that
minimised our objective function. This process can be described as simulation. This
simulation is what will be executed whenever a candidate car park is to be generated
with a given set of parameters. It is important to note also that any simulation may find
multiple car parks with the same objective function value that are the minimum. In this
scenario, we will default to taking the first car park grid we find. This should have little
change on the end result of our algorithm as the process is stochastic; any execution of
the algorithm with the same parameters may not return the same car park.

The number of times we choose to simulate the car park grid with a particular parameter
set is another choice we must make. We would like to ideally choose a number of simu-
lations that will find an optimal result in the majority of cases, while also being as small
a number as possible to reduce execution time. This is not easily determined and may
require simple trial and error to determine an adequate value.

With an ideal number of simulations decided, we would then have to define how we
are going to consider our parameter set and how we may determine our best choice of
parameters. We cannot strictly optimise over our objective function with a set of pa-
rameters as the algorithm is now stochastic. Now we must instead try to determine
whether a specific set of parameters is optimal by simulating as described prior. Similar
to the previous approach, we can implement a brute force approach to considering our
parameter space; returning the parameters that minimised the objective function through
simulation after iterating over a significant number of parameters in our parameter space.
This approach however no longer has as many guarantees for determining a global min-
imum. This is because we no longer have a guarantee that the simulated performance
accurately reflects the effectiveness of the chosen parameter set – it is only an implication.
The number of times we would have to simulate our car park grid would also mean we
may have to reduce the number of simulations for this process to be computationally
feasible. This entire process above of iterating over the parameter space however could
itself be simulated multiple times to mitigate some of the issues described above – provid-
ing greater accuracy in our resulting choice of parameters that produce the best car parks.

The underlying issue with all of the above is that more simulation is our best attempt
at increasing the accuracy of our assessment of a given set of parameters. This directly
increases our computational complexity however and may not be practical if the num-
ber of simulations is greater than required. With this considered, the above approach to
determining optimal parameters will be considered and implemented in our program.

35

3.7 Explanation of code

Using the simplified configuration similar to that used in the deterministic approach, we
can now create our new algorithm. The program written that executes this approach
is in the appendix of this report. The program was written in python version 3.6.3 [8].
Python was chosen as I personally have experience using the development language and
are familiar with its libraries. The libraries that proved must useful where NumPy [9]
and SciPy [10] which both provided useful utilities to assist with creating our program.
The program outputs its results as an image representing the car park grid.

Some aspects of the approach are very similar to that of the previous. The idea of
“layers” that was implemented in the previous approach is done in virtually the same
way. We only consider two of the attributes now however meaning that some parts of the
previous approaches structure are redundant when applied here. These layers provide the
same benefit to performance in the idea of memoisation.

3.7.1 Implementation of rule sets and relaxation of rules

We defined our rule sets prior to be in relation to two separate entities; the vertex we are
branching from, and the potential new vertex branching out from a vertex. These are
implemented in the function shown below.

1 de f generateCandidates (s e l f , r e l axed=False , veryRelaxed=False) :
2 minimum = math . i n f
3 cand idate s = [[]]
4 f o r i in range (0 , s e l f .w) :
5 f o r j in range (0 , s e l f . h) :
6

7 ############################
8 # I n i t i a l ve r tex s e l e c t i o n #
9 ############################

10 i f not s e l f . road [i +1, j +1] > 0 : #Has to be a road
11 cont inue
12

13 i f not (i >= 0) and (j >= 0) and (i < s e l f .w) and (j < s e l f . h) :
14 # Has to be with in boundary
15 cont inue
16

17 count = 0
18 f o r m in neighbourhood :
19 i f s e l f . road [i n t (i + 1 + m[0]) , i n t (j + 1 + m[1])] > 0 :
20 count = count + 1
21 i f count == 4 : # Has to not be surrounded
22 cont inue
23

24 ##
25 # Now i n d i v i d u a l branching opportunity c o n s i d e r a t i o n #
26 ##
27 f o r m in neighbourhood :
28 f l a g = True
29

30 i f s e l f . road [i n t (i + 1 + m[0]) , i n t (j + 1 + m[1])] > 0 :
31 # Has to not a l r eady be a road
32 cont inue
33

34 i f s e l f . neighbourEmptyCount (i n t (i + m[0]) , i n t (j + m[1])) < 1 :
35 cont inue
36

37 f o r n in neighbourhood :
38 i f s e l f . road [i n t (i + 1 + m[0] + n [0]) , i n t (j + 1 + m[1] + n [1])] > 0 :
39 # Don ’ t check roads
40 i f [i n t (i+m[0]+n [0]) , i n t (j+m[1]+n [1])] == [i n t (i) , i n t (j)] :
41 cont inue
42 e l s e :
43 i f not veryRelaxed :
44 i f r e l axed :

36

45 i f s e l f . road [i n t (i+m[0]+n [0]+1) ,
46 i n t (j+m[1]+n [1]+1)] == 1 :
47 cont inue
48 e l s e :
49 f l a g = False
50 e l s e :
51 f l a g = False
52

53

54 i f s e l f . neighbourRoadCount (i+m[0]+n [0] , j+m[1]+n [1]) > 1 and not
r e l axed :

55 # Check i f the road i s a l r eady a c c e s s i b l e in 2 ways
56 f l a g = False
57

58 i f f l a g :
59 cand idate s . append ([i n t (i + m[0]) , i n t (j + m[1])])
60

61 r e turn cand idate s

Listing 4: Function for generating the set of potential new vertices to be added to the road network

The above part of the program separates out the two rule sets under the headings “Initial
vertex selection”, which is the consideration for which vertices we consider the neigh-
bourhood of, and “Individual branching opportunity consideration”, which is where we
consider branching directions which follow the respective rule set. The above function
also incorporates the idea of the relaxation of the rules defined prior. It has two levels of
relaxation, as required, and enables this with the toggle of the parameters “relaxed” and
“veryRelaxed”. These parameters are set to true in the following function when the set
of potential vertices is found to be empty.

1 de f i t e r a t e (s e l f , probV=1/2 , threshRoad=1, th re shDi s t =1) :
2 whi le True :
3 i f s e l f . getAmountEmpty () == 0 :
4 break
5

6 chosen = s e l f . getNextVertex (False , probV , threshRoad , th r e shDi s t)
7

8 i f chosen :
9 nextRoad = chosen

10 e l s e :
11 chosen = s e l f . getNextVertex (True , probV , threshRoad , th r e shDi s t)
12

13 i f chosen :
14 nextRoad = chosen
15 e l s e :
16 chosen = s e l f . getNextVertex (True , probV , threshRoad , threshDist , True)
17

18 i f chosen :
19 nextRoad = chosen
20 e l s e :
21 pr in t (’ Error − could not i t e r a t e as no p o t e n t i a l v e r t i c e s ’)
22 s e l f . show ()
23 break
24

25 s e l f . update (nextRoad [0] , nextRoad [1])
26

27 r e t = s e l f . roadCount ()
28

29 r e turn (r e t)

Listing 5: Function for iterating the growth of the network

This shows the implementation of the relaxation of the rules using the variable “chosen”.
This variable refers to whether a vertex has successfully been chosen from the process
of selecting a potential vertex from the set of potential vertices. This process will be
considered in more detail in the following sections. This part of the program shows that if

37

it is unsuccessful in selecting said vertex, it will attempt the same procedure, but with the
“relaxed” variable now true. This is similarly repeated with the “veryRelaxed” variable
if the result of the relaxed rule set is also empty.

3.7.2 Ordering of filters in the filtering process

Our process to filtering the set of potential vertices was defined prior and listed three
separate ways of filtering based on three separate attributes. An important consideration
that was not discussed in previous sections is the ordering of these filters. Which attribute
should we filter by first? This question becomes more important when we consider that
any step of our filtering process does not take into consideration the previous filtering
steps. Because of this, we would ideally want to filter in a way that maximises the num-
ber of vertices that may proceed at each step, as this reduces the likelihood of potential
vertices not being considered when they could. This leads to the following function:

1 de f getNextVertex (s e l f , r e l axed=False , probV=1/2 , threshRoad=1, th re shDi s t =1, veryRelaxed=
False) :

2

3 cand ida t eVer t i c e s = s e l f . generateCandidates (re laxed , veryRelaxed)
4

5 cand ida t eVer t i c e s = s e l f . s p l i tCand ida t e s (cand ida t eVer t i c e s)
6

7 i f c and ida t eVer t i c e s == [[] , []] :
8 r e turn Fa l se
9 i f c and ida t eVer t i c e s [0] == [[]] :

10 cand ida t eVer t i c e s = cand ida t eVer t i c e s [1]
11 e l i f c and ida t eVe r t i c e s [1] == [[]] :
12 cand ida t eVer t i c e s = cand ida t eVer t i c e s [0]
13 e l s e :
14 i f np . random . uniform (0 , 1) > probV : #Horz ionta l or v e r t i c a l cho i c e
15 cand ida t eVer t i c e s = cand ida t eVer t i c e s [0]
16 e l s e :
17 cand ida t eVer t i c e s = cand ida t eVer t i c e s [1]
18

19 cand ida t eVer t i c e s = s e l f . f indLeastRoadCandidates (cand idateVer t i c e s , threshRoad)
20

21 cand ida t eVer t i c e s = s e l f . f i ndClo se s tCand idate s (cand idateVer t i c e s , th r e shDi s t)
22

23 chosen = np . arange (0 , l en (cand ida t eVe r t i c e s))
24

25 chosen = cand ida t eVer t i c e s [i n t (np . random . cho i c e (chosen))]
26

27 r e turn chosen

Listing 6: Function that performs the filtering steps on our set of potential vertices, returning the final,
randomly chosen value

The above shows the ordering we have chosen for our filtering steps. Our first step chosen
is “splitCandidates” which implements the separation of the potential vertices into two
subsets based on their branching direction. This was chosen as the first filtering step as
it reduces the number of potential vertices less than both previous steps. The above part
of the program also shows our consideration for choosing one of the subsets depending on
if one is empty.

After this filtering step, the choice between which filtering step goes next is not as simple
of a decision. “findLeastRoadCandidates” and “findClosestCandidates” implement the
filtering by the amount of filled space around a potential vertex and the distance that
potential vertex is from the entrance respectively. Both of these filtering steps will sig-
nificantly reduce the number of potential vertices and will depend more heavily on the
current state of the road network. Because of this, both orderings were considered, with

38

little to no difference found in results. This means that our choice of which filtering step
to proceed with after “splitCandidates” can be made rather arbitrarily.

After all the filtering steps, a random value is chosen from the remaining set by choosing
a random number that represents the index of the potential vertex to be chosen.

3.7.3 Incorporating uncertainty into the filtering process

We discussed previously the parameters s, d, h that represent the uncertainty we have in
our filtering process. s, d, h are provided to our algorithm to encode how much uncertainty
we have in any one step of the filtering process. The way these parameters have been
implemented will be shown in the following parts of the program. The first part that will
be addressed is the parameter h representing our preference of branching direction. This
is implemented in the following part of the previous function shown:

1 i f np . random . uniform (0 , 1) > probV : #Horz ionta l or v e r t i c a l cho i c e
2 cand ida t eVer t i c e s = cand ida t eVer t i c e s [0]
3 e l s e :
4 cand ida t eVer t i c e s = cand ida t eVer t i c e s [1]

Listing 7: Function that performs the filtering step that splits the potential vertices into two subsets
based on their branching direction.

This part of the previous function is what illustrates our preference for a specific branching
direction. The variable “probV” represents the negative of the parameter h. This variable
represents the probability we associate with how likely it is for the algorithm to prefer the
vertical branching direction. This means that the parameter we provide to our algorithm
is effectively 1− h. The way we execute this choice in branching direction is to randomly
draw a value from a uniform distribution, in the interval [0, 1]. If this value is greater
than the value of “probV”, it will choose the subset of potential vertices with horizontal
branching direction. With this implementation, the following scenario will happen with
probability 1− probV = h; which is our aim. The other scenario represents choosing the
subset of potential vertices with vertical branching direction, which should clearly happen
with probability probV .

Similarly, the same technique for implementing our random choice based on our parame-
ters s, d is used in the filtering steps for the other two considered attributes. This is shown
below, where s, d are represented by 1− threshRoad and 1− threshDist respectively:

1 de f f i ndClo se s tCand idate s (s e l f , v e r t i c e s , th r e shDi s t =1) :
2 minimum = math . i n f
3 minimumSet = [[]]
4 randomSet = [[]]
5 f o r v in v e r t i c e s :
6 i f v == [] :
7 cont inue
8 d i s t = s e l f . ge tDi s tance (v [0] , v [1])
9

10 i f d i s t == minimum :
11 i f minimumSet == [[]] :
12 minimumSet [0] = v
13 e l s e :
14 minimumSet . append (v)
15 e l i f d i s t < minimum :
16 minimumSet =[v]
17 minimum = d i s t
18 f o r v in v e r t i c e s :
19 i f not v in minimumSet :
20 i f np . random . uniform (0 , 1) > th re shDi s t :

39

21 i f randomSet == [[]] :
22 randomSet [0] = v
23 e l s e :
24 randomSet . append (v)
25

26 i f minimumSet == [[]] :
27 r e turn [[]]
28 e l i f randomSet == [[]] :
29 r e turn minimumSet
30

31 minimumSet = minimumSet + randomSet
32

33 r e turn minimumSet
34

35

36 de f f indLeastRoadCandidates (s e l f , v e r t i c e s , threshRoad=1) :
37 minimum = math . i n f
38 minimumSet = [[]]
39 randomSet = [[]]
40

41 f o r v in v e r t i c e s :
42 i f v == [] :
43 cont inue
44 road = s e l f . g e t F i l l e d S p a c e s (v [0] , v [1])
45

46 i f road == minimum :
47 i f minimumSet == [[]] :
48 minimumSet [0] = v
49 e l s e :
50 minimumSet . append (v)
51 e l i f road < minimum :
52 minimumSet = [v]
53 minimum = road
54

55 f o r v in v e r t i c e s :
56 i f not v in minimumSet :
57 i f np . random . uniform (0 , 1) > threshRoad :
58 i f randomSet == [[]] :
59 randomSet [0] = v
60 e l s e :
61 randomSet . append (v)
62

63

64 i f minimumSet == [[]] :
65 r e turn [[]]
66 e l i f randomSet == [[]] :
67 r e turn minimumSet
68

69 minimumSet = minimumSet + randomSet
70 r e turn minimumSet

Listing 8: Functions that perform the filtering steps over the distance the potential vertex is from the
entrance, and the amount of filled space surrounding a potential vertex respectively.

3.7.4 Implementation of the cleaning process

The cleaning process that will be implemented after the car park grid has been filled will
aim to reduce wasted road vertices in the ways described prior. The rules a vertex must
follow to be considered unnecessary, and can therefore be removed, are not necessarily
simple to implement. Rule (1) is slightly more simple, involving a calculation over the
neighbourhood of every vertex in the neighbourhood of a potential vertex. This process
will be described below. The far less obvious rule to implement is rule (2). Determining
when a vertex may cause another to become inaccessible at face value requires calculating
many paths along the road network to determine whether just one vertex may be removed.
A simpler approach that can achieve the same objective may come in using the distance
layer we have taken from the deterministic approach. The idea is that if a road network
vertex rij has the largest distance value in the set of N(i, j) ∪ (i, j) then it will not cause

40

any other vertex to become inaccessible from the road network entrance if removed.

Proof. Suppose that rij has the maximum distance value in the set N(i, j) ∪ (i, j). If
this is true then that means that for all vertices in N(i, j), the distance value is less
than that of the distance value at (i, j). This means that vertex rij must not belong to
the path that connects any element in its neighbourhood to the entrance, because vertex
rij would only belong to any of these paths if it had a distance value less than one of its
neighbours, continuing the shortest path from itself to that of another vertex. This means
that removing the vertex rij from the road network would not break any paths and would
subsequently not cause any other vertex to become inaccessible from the entrance.

This approach should therefore suffice in determining vertices we can remove from
the road network. Both of the above rules are implemented in the following part of the
program:

1 de f c l ean (s e l f) :
2 v e r t i c e s = [[]]
3 de l e t ed = False
4 f o r i in range (0 , s e l f .w) :
5 f o r j in range (0 , s e l f . h) :
6 i f s e l f . road [i n t (i +1) , i n t (j +1)] :
7 f l a g = True
8 f o r m in neighbourhood :
9 i f (i+m[0]>=0) and (j+m[1]>=0) and

10 (i+m[0] < s e l f .w) and (j+m[1] < s e l f . h) :
11 i f not s e l f . d i s t anc e [i , j] >= s e l f . d i s t anc e [i n t (i+m[0]) ,
12 i n t (j+m[1])] :
13 f l a g = False
14 break
15 i f f l a g :
16 count = 0
17 count2 = 0
18 f o r m in neighbourhood :
19 i f (i+m[0]>=0) and (j+m[1]>=0) and
20 (i+m[0] < s e l f .w) and (j+m[1] < s e l f . h) :
21 f l a g 2 = False
22 i f s e l f . road [i n t (i + m[0] + 1) , i n t (j + m[1] + 1)] :
23 cont inue
24 count = count+1
25 f o r n in neighbourhood :
26 i f (i+m[0]+n[0]>= 0) and (j+m[1]+n[1]>=0) and
27 (i+m[0]+n[0] < s e l f .w) and (j+m[1]+n[1] < s e l f . h) :
28 i f [i n t (i+m[0]+n [0]) , i n t (j+m[1]+n [1])] == [i , j] :
29 cont inue
30 e l s e :
31 i f s e l f . road [i n t (i+m[0]+n [0]+1) ,
32 i n t (j+m[1]+n [1]+1)] >0:
33 f l a g 2 = True
34 i f f l a g 2 :
35 count2 = count2+1
36

37 i f count2 == count :
38 s e l f . de l e t eVer t ex (i , j)
39 de l e t ed = True
40 e l s e :
41 cont inue
42 r e turn de l e t ed

Listing 9: Function that performs the cleaning process described above.

The above illustrates what we have described. Something that has not been discussed
however is how this cleaning process is applied. The idea behind this cleaning process
is to remove all the vertices that are unnecessary. Under this scheme however, some
vertices that are unnecessary may not be immediately determined as such. This means
that this cleaning process must be repeated until there are no more changes to the road
network. This is implemented through the variable deleted which refers to whether the

41

road network removed any vertices during this execution of the function. If it returns
false, then the cleaning process is terminated and the final car park grid is output.

3.7.5 Brute force approach to optimising over our parameters

We have now illustrated the entire approach of generating a car park grid with a given
parameter set. With this, we can simulate the process of generating the car park grid
multiple times with any given set of parameters to determine the most optimal result on
average. But as described prior, we want to iterate over our parameter space to deter-
mine which specific parameter sets may create the best possible results on average. This
will be done in a similar way as to the previous brute force minimisation used in the
deterministic approach. We will iterate over the parameter space for each parameter in
the interval [0, 1], as they are probabilities. At every set of parameters, the algorithm
will be simulated a fixed integer number of times. The minimum value of our objective
function will be kept along with the parameters used to find this value; these will be
returned after the execution has finished for any specific set of simulations. The number
of samples to take within each parameters interval range will be provided as an integer
to our brute force function. The more samples taken, the greater the likelihood that the
specific parameter found is most optimal. However, this also increases execution time.
The part of the program listed below shows our function implementing this approach:

1 de f s imulate (k , p1 , p2 , p3 , c a r p a r k s i z e , entrance , minimum=math . i n f) :
2 min f l ag = False
3 f o r n in range (0 , k) :
4 CarPark = Grid (c a r p a r k s i z e [0] , c a r p a r k s i z e [1] , entrance [0] , entrance [1])
5 CarPark . i t e r a t e (p1 , p2 , p3)
6 c l e a n f l a g = True
7 whi le c l e a n f l a g :
8 c l e a n f l a g = CarPark . c l ean ()
9

10 valu = CarPark . roadCount ()
11 i f valu < minimum :
12 minimum = valu
13 min f l ag = True
14 MinCarPark = copy . deepcopy (CarPark)
15 i f m in f l ag :
16 pr in t (minimum , ”Road network v e r t i c e s \n with parameters ” , p1 , p2 , p3)
17 MinCarPark . show ()
18 r e turn minimum
19

20 de f bruteForceApproach (s imulat ion n , c a r p a r k s i z e , entrance , sample n) :
21 minimum = math . i n f
22 f o r i in np . l i n s p a c e (0 , 1 , sample n) :
23 f o r j in np . l i n s p a c e (0 , 1 , sample n) :
24 f o r k in np . l i n s p a c e (0 , 1 , sample n) :
25 minimum = simulate (s imulat ion n , i , j , k , c a r p a r k s i z e , entrance ,

minimum)

Listing 10: Function that simulates the car park grid generation process and the function that performs
the brute force approach to determining our optimal parameters as described above.

3.8 Results

The below figures and results will show how this stochastic approach performed under
multiple different situations. The program outputs an image which represents the car
park grid. Every vertex that is coloured blue represents the boundary of the car park.
Any cell coloured red represents a vertex belonging to the road network, where the square
red vertex denotes the entrance of the car park. Edges between vertices belonging to the
road network are drawn as black lines. All green vertices represent a car parking space.
The program used to generate these results can be found in the appendix.

42

3.8.1 Square car park boundaries

Initially the car park grids that were considered were those with a square boundary shape.
For these car park shapes, the entrance was initially placed as central to one axis of the
car park as possible, and was required to be adjacent to one of the boundary vertices.
The brute force approach was run with parameters where the value of each parameter fell
in the interval [0, 1]. The number of samples taken within this interval varied. The more
samples chosen, the longer the time the program took to return a successful result. This
is deliberately chosen to be the same test as performed in the deterministic approach so
the two can be compared.

An example of one of these results is the following figure. This result was run with a
set of parameters found through the brute force approach. The car park grid size was
15 × 15 and and the entrance to the car park was placed centrally against the bottom
edge of the boundary.

Figure 9: This is the result output from the program listed in the appendix. The car park grid size was
15 × 15 and and the entrance to the car park was placed at centrally against the bottom edge of the
boundary, marked by a square. The parameters used were (0.0, 1.0, 0.9) This result has 81 road network
vertices and 144 car parking spaces.

This results merits are visible immediately based on our own intuition of how a car
park may be designed. The car park meets the definition of a tree as a requirement, unlike
our previous approach. The number of road vertices is 81 against 144 car parking spaces
leading to a car parking space to road vertex ratio of 0.17. This result is an improvement
over the result garnered in the deterministic approach with the same dimensions. It has
many characteristics we would associate with an ideal car park with many straight lines
of road vertices and few intersections. Importantly, the spacing between rows of car park-
ing spaces is consistently two car parking spaces; a previously highlighted, ideal quality.
When compared to our optimal solution 2, we can see that it is in fact the optimal solu-
tion, which is both significant and promising.

43

An important attribute to note about this result is the parameters it found that more
consistently minimised our objective function. The first parameter, associated with our
preference of branching direction, is set to 0. This has several implications as to the
execution of our algorithm and how we may generate other results. This will be discussed
in the result conclusions.

These exact same parameters were used to simulate on the exact same sized car park
grid, but with the entrance position changed. This test was also performed in the de-
terministic approach, and is done here for comparison. The idea behind testing this was
to determine whether we had found parameters that were not only optimal for a specific
configuration, but could be applied to others. The following shows this test, with the
entrance moved several space to the left.

Figure 10: This is the result output from the program listed in the appendix. The car park grid size was
15 × 15 and and the entrance to the car park was placed at slightly off center against the bottom edge
of the boundary, marked by a square. The parameters used were (0.0, 1.0, 0.9) This result has 81 road
network vertices and 144 car parking spaces.

This result is virtually the exact same result as the previous and is clearly also the
optimal when compared to 2. There is only one road different in the two results, the
entrance. This is a more promising result that would seem to highlight that the set of
parameters found is more applicable to other situations. To test this further, moving
the entrance again but more than previous may lead to a greater difference in results.
Our choice of entrance will be (0, 1) specifically as this entrance placement, based off of
the results gained so far, would seem to give opportunity for an even more efficient road
network configuration. Whether this value is found through simulation is a secondary
part of this next test.

44

Figure 11: This is the result output from the program listed in the appendix. The car park grid size
was 15 × 15 and the entrance to the car park was placed far off center against the bottom edge of the
boundary, marked by a square. The parameters used were (0.0, 1.0, 0.9) This result has 80 road network
vertices and 145 car parking spaces.

This result also shows virtually the same result. The placement of the entrance gave
the opportunity to find a more optimal solution, which the algorithm found through
simulation. This result has 80 road network vertices against 145 car parking spaces. This
means that the car park grid has a car parking space to road network vertex ratio of 1.81.
This seems to show that the parameters found do have more application across multiple
different configurations of car park grids. This result is the absolute optimal found for a
grid of size 15× 15.

3.8.2 Rectangular car park boundaries

After considering square shaped car park grids, the same process was performed providing
a rectangular car park. Initially the entrance was placed as central to one axis of the car
park as possible and was required to be adjacent to one of the boundary vertices, much
the same as the previous example. The brute force approach was run in the same way.
The number of samples taken within this interval varied. This test was deliberately made
to be similar to the test in the previous approach, that considered rectangular car park
boundaries, for comparison.

The following example highlights some of the merits and issues of this approach with
the above setup. The parameters were obtained through the brute force approach to
maximisation. The car park grid size was chosen as 10× 21 and the entrance to the car
park was placed centrally against the bottom edge of the boundary.

45

Figure 12: This is the result output from the program listed in the appendix. The car park grid size was
10× 21 and the entrance to the car park was placed centrally against the bottom edge of the boundary,
marked by a square. The parameters used were (1.0, 1.0, 0.75) This result has 79 road network vertices
and 131 car parking spaces.

This result shares many of its merits with the last two examples from the square car
park grid. It contains lines of road network vertices, has few intersections, and maintains
appropriate space between rows of road network vertices. The number of road network
vertices was 79 against 131 car parking spaces. This leads to a car parking space to road
network vertex ratio of 1.66. This value is not too dissimilar to those of the previous
examples, highlighting that the solution found here is similarly effective.

Importantly, the parameters found to be most effective in this situation are similar to
that of the previous examples. The only major difference between them is that the first
parameter for preference in branching direction has effectively flipped; it now gives entire
preference to vertical branching. This highlights an aspect of the algorithm that was
mentioned prior, that will be discussed in section 3.8.5 .

An issue that is shown in this approach is that there is clearly some improvement that
could be made. More specifically, there are two points on this result where we, based on
our intuition, could remove two vertices. These points can be described as the “T shaped
end points”. This is caused by an aspect of how we choose to relax our rules during
certain parts of the algorithm depending on circumstance. This issue will be discussed in
detail in 3.8.6.

Due to the success from the tests in the square car park grid that related to chang-
ing the car park entrance position, a similar test will be performed here. With the same

46

sized car park grid and the same parameters, the car park can be simulated over to find an
optimal configuration. The main difference in this test will be that the entrance position
will be significantly different to that of the first; from the bottom boundary edge to the
left edge, placed centrally. The result to that test is shown below.

Figure 13: This is the result output from the program listed in the appendix. The car park grid size was
10 × 21 and the entrance to the car park was placed at centrally against the left edge of the boundary,
marked by a square. The parameters used were (1.0, 1.0, 0.75) This result has 78 road network vertices
and 132 car parking spaces.

This result is promising as it shows very little change to the car park road structure,
except for a slight improvement of one extra car parking space. This shows that even
with a large change to the car parks configuration, the algorithms growth process is not
significantly changed. This will be discussed further in section 3.8.4 . The resulting ratio
of car parking spaces to road network vertices for this example is 1.69.

3.8.3 Result conclusions

3.8.4 Performance in comparison to deterministic approach

We have deliberately chosen similar examples when generating the results from both ap-
proaches. This is so that we may compare their performance directly to determine which
one is more effective at tackling our problem.

When comparing our two sets of results, we can see noticeable differences at a glance.
For example, the first result from the first approach 3 seems to create a pattern that
almost represents hooks in a repeating pattern. The chosen parameter set for this result
clearly influences the algorithm to make this specific type of arrangement, regardless of

47

the orientation, entrance location, and car park dimensions. This happens at the possi-
ble detriment to overall performance. This can be illustrated by looking similarly at 4.
Our current approach however seems to be far less influenced be these small changes, as
illustrated by 9 and 10. Both of these figures also illustrate optimal car parks for their
configurations. This seems to show that this stochastic approach achieves our ultimate
goal of generating optimal car park configurations.

When comparing the two sets of results, we must also consider the details of the per-
formance; the car parking space to road network vertex ratio. In 3 and 5, the ratio found
was 1.65 and 1.39 respectively. This in comparison to the results from 9 and 12, 0.17 and
1.66 respectively, shows a significant improvement in this approach. These are also not
the most optimal configuration found for the car park boundaries at hand, where 11 and
13 show an even greater increase in performance with ratios 1.81 and 1.69.

Another important aspect of comparison is the efficiency of the algorithms implemented
in both approaches. Through testing, this approach was significantly less computationally
demanding than the deterministic approach. Increasing the number of simulations lead to
an increased time of execution, but for the number of simulations required to determine
the car park grid that minimised the objective function, the execution time was still less
on average. Especially considering the brute force approach to minimisation used in both
approaches, this approach was significantly quicker. This process however was still not
necessarily quick enough to consider running on every configuration as that would still be
too demanding, much the same as the deterministic approach.

This increase in performance will be partially related to having to compute less attributes
at every iteration of the growth algorithm. This approach used less information about the
road network at every iteration of the growth algorithm to achieve this improved result.
It is also important to note that as this approach used to determine the car park grid
that should be returned probabilistic simulation, the crossover of parameters was greater
than in the previous approach; if the value of a parameter was used to produce a result,
the exact same parameters were not required to produce the same result.

3.8.5 Parameter choice and general application

After evaluating our results for this approach, a pattern in the parameters preferred
emerges. Through the brute force approach to determining optimal parameters, our re-
sults would often resemble (1, 1, 0.75) or (0, 1, 0.9). This trend is consistent through almost
every run of our algorithm and highlights some important factors of how our algorithm is
best used.

Every single result found from our brute force optimisation had the first parameter h
set to either 0 or 1. What does this imply? It means that the best use of our approach
was to only consider horizontal or vertical branching opportunities at every iteration of our
growth algorithm, removing all uncertainty from this step. When there were no branch-
ing opportunities left in the preferred direction, our algorithm defaulted to selecting the
non-empty subset of branching directions as described prior. This effectively can be de-
scribed as choosing a direction in which the road network should have long lines of road
network vertices, and only when you have reached a point where that isn’t possible do
you consider other options. This consistency would seemingly provide a large benefit as
it would reduce a fair amount of the chaotic nature of an approach that is mostly random.

48

The other two parameters, on the whole, fell in the interval [0.7, 1] depending on the
circumstance. This also makes sense as although greater structure is created by setting
the first parameter to 1 or 0, some guidance in how it may choose to branch out after it
has reached a point where it can no longer branch in the preferred direction may lead to
optimal results. The variance in the choice of these other parameters coming from the
fact that this process is random, and certain parameters will make certain results more
likely, but not guaranteed. This small uncertainty would potentially lead to results that
may be more optimal and not as likely to be considered if no uncertainty had been encoded.

So after this we can see that a result of the form (0, a, a) or (1, a, a), where a ∈ [0.7, 1],
will in almost all cases be found to produce an optimal solution for a given car park grid,
given enough simulations. The two different parameter sets will prefer the two different
branching directions. This means that the result, depending on the choice of the first
parameter, will either make rows or columns of road network vertices with road network
vertices connecting them. The fact that these two parameter sets apply to so many cases
is promising, as it means that the process of determining optimal parameters for a given
car park configuration may not be necessary. This is of specific benefit as this is the most
costly aspect of this approach in terms of computation. This in comparison to the de-
terministic approach shows far broader application and becomes far less computationally
demanding overall as you do not need to run the brute force approach to minimisation of
the objective function.

3.8.6 Issue of how our rule choices negatively effect road network

One issue that was observed prior in 12 was related to the relaxation of rules. The
circumstance that was found in this situation is related to the two visible aspects of the
car park grid where it branched in a away from the boundary to access two car parking
spaces that were accessible in a simpler way. This is due to the fact that for the algorithm
to consider branching so that it is adjacent to the car park boundary, it must relax its
rule set. This means that it must have no other option, before relaxing the rule set so
that it may be considered as a possibility. This will very rarely happen as in this specific
circumstance, there is a way to access vertices in a way that doesn’t require relaxing the
rule set. This issue is difficult to tackle as it will cause the algorithm in the vast majority
of cases to choose a few vertices to add to the road network that do not contribute to the
most optimal solution. This may require greater consideration, but an initial thought of
improvement may be the idea of adding a possibility for a vertex that requires the relaxed
rule set to be considered to pass through the “filter” with some probability. This idea
then turns the relaxation of rules to instead be another filter that we associate with a
probability.

3.8.7 Overall approach conclusions

This approach, taking a set of parameters and a car park grid with specified dimension, was
able to produce a filled car park grid which approximates a car park configuration in some
real context. The car park grids produced were found to be the optimal in most cases,
with some adjustment required in certain circumstances to reach an optimal solution.
These generated car parks can be used as candidates for a potential car park topology
that could be optimised through the approach of optimising over road networks designed
in [1]. This approach in comparison to the deterministic approach is less computationally
demanding and has been shown to have a greater overall performance, assessed by the

49

ratio of car parking spaces to the amount of road. This approach in comparison to the
previous deterministic approach is also far more applicable practically and can be applied
in a much broader range of contexts. These contexts could include a more complex car
park boundary or the inclusion of obstacles. The issues described above do have an effect
on the potential of this approach, but potential solutions have been presented that may
help mitigate these factors. Due to the performance provided with only a few set of
parameters, an optimal configuration may quickly be determined through this approach
of simulating the algorithm that grows our network.

4 Conclusions and possible extensions

We have demonstrated two simple approaches to generating multiple candidate car park
networks using a branching algorithm. The deterministic approach attempts this through
a cost function that is optimised over, while the stochastic approach uses simulation and
random selection. Both algorithms dynamically grow the road network to fill the space
inside the car park, reaching an optimal result. These algorithms have been tested on
rectangular car park boundaries, and have not been explored in more complicated config-
urations. These tests however illustrate the efficacy of these approaches and show their
potential application. These candidate car parks can then be used in conjunction with
[1] to create a fully automated approach to optimising over a road network, as the need
for candidate road networks can be provided by our approaches.

The possible extensions to this project that have been considered are listed below.

4.1 Testing both approaches with more complex car park configurations

Both of the approaches were tested with a variety of car park grid configurations. Different
entrance locations and different dimensions were specifically considered. more complex
boundaries and obstacles, although included in the scope of this problem, were not directly
considered. This was mainly due to the focus of our results being on the comparison
between the two approaches, and the deterministic approach did not seem effective enough
to be considered in the more complex context. The stochastic approach did achieve more
promising results however, meaning that testing more complex configurations of the car
park with this approach would be a logical next step. For example, the algorithm could
be tested in a car park grid with a rectilinear boundary and with obstacles present.

4.2 Using a generative model and the Fourier transform to construct the
road network

When judging what we would consider to be an optimal car park, some noticeable consis-
tent traits can be found. Almost all of the optimal car park road network configurations,
in a non-simplified context, can be described as a set of repeated rows or columns of road
network vertices that are at some angle in relation to the car park boundary. This could
lead to a natural description of a car park being said rows or columns, repeating at some
fixed interval. This can then be naturally described by some frequency, for which rows
are placed.

This then leads into the idea that the road network can be decomposed into the rele-
vant frequencies through a Fourier transform. This then gives a description of a road
network in the frequency domain. This leads to a possible learning context where you can

50

construct a generative model around the boundary of the car park and the associated fre-
quency domain representation of the car parks road network. This model could be trained
on car parks that exist in the real world through images, with a function associated that
represents the boundary; perhaps an approximated boundary so that the function is less
complex. With this, the idea would then be to be able to provide the model a boundary
function, for which it would then be able to return a result in the frequency domain.
This would then be converted back through the Fourier transform to construct the road
network.

4.3 Using genetic algorithms to improve the road network structure

We briefly mentioned genetic algorithms earlier in this report. In that context, genetic
algorithms would have been used on the parameters provided to our algorithm to optimise
over the road network. This idea however employs a different use of genetic algorithms.
Instead, you would use genetic algorithms with some base candidate road network. The
genetic algorithm would add or remove vertices depending on the “genes” passed forward
from other generations of the road network. This would be executed over the same
objective function used in our deterministic and stochastic approach. This idea was
thought of as a natural extension to the issue found in our stochastic approach, where
some uncertainty in our relaxation of the rule set was considered as a solution to rules
discluding potential optimal configurations. The use of genetic algorithms would encode
this uncertainty in each generation of the road network.

4.4 Reinforcement learning as an approach to optimising the road network

A reinforcement learning approach [11] could also be considered for this type of problem.
The idea behind a reinforcement learning approach is to take a state of the current car
park, and using a policy, determine what action the algorithm should perform, where
doing any action on any state has an associated cost. This action will change the state
of the car park to a new state, which is then used to continue repeating the process. The
idea behind this approach would be that we do not know the policy that would optimally
create our car park. We would instead try to learn our policy based off of the total
cost that the car park would have garnered after executing our algorithm that grows the
network. This is not too dissimilar to our deterministic approach, as you could describe
our deterministic approach as a brute force reinforcement learning task. In this approach
however, instead of using our intuition of what would create an ideal car park to make a
cost function, we may make this variable latent. We would still have a cost function, but
it would now be used to assess our performance, instead of determining the most optimal
choice at any given iteration.

5 Appendices

5.1 Python code for the Deterministic approach

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import copy
4 import sys
5 GraphFigure=None
6 axs=None
7 from sc ipy . opt imize import fmin
8 import math
9

51

10 neighbourhood = [[0 , 1] , [0 , −1] , [1 , 0] , [−1 ,0]]
11

12 de f CreateRoadLayer (width , height , s ta r tx , s ta r ty , obstac l eConstant =1) :
13 g r id = np . z e r o s ((width+2, he ight +2))
14 g r id [: , 0] = obstac l eConstant
15 g r id [: , he ight +1] = obstac l eConstant
16 g r id [0 , :] = obstac l eConstant
17 g r id [width +1 , :] = obstac l eConstant
18 g r id [s t a r t x +1, s t a r t y +1] = 1
19 r e turn g r id
20 #These two l a y e r s don ’ t need to con s id e r the boundary so they are sma l l e r . t h i s needs to

be
21 #r e f l e c t e d in the i n d i c e s used to t r a v e r s e e lements
22 de f CreateDistanceLayer (width , height , s ta r tx , s t a r t y) :
23 g r id = np . z e r o s ((width , he ight))
24 g r id [s ta r tx , s t a r t y] = 1
25 r e turn g r id
26

27 de f CreateFi l l edSpaceLayer (width , height , s ta r tx , s t a r t y) :
28 g r id = np . z e r o s ((width , he ight))
29 f o r m in neighbourhood :
30 #Wil l probably need to add p r o t e c t i o n f o r bounding on other s i d e too
31 i f (s t a r t x + m[0] >= 0) and (s t a r t y + m[1] >= 0) :
32 g r id [s t a r t x + m[0] , s t a r t y + m[1]] = 1
33 r e turn g r id
34

35 c l a s s Grid :
36 de f i n i t (s e l f , width , height , s ta r tx , s t a r t y) :
37 s e l f .w = width
38 s e l f . h = he ight
39 s e l f . s t a r t = [s ta r tx , s t a r t y]
40 s e l f . road = CreateRoadLayer (width , height , s ta r tx , s ta r ty , 1)
41 s e l f . d i s t anc e = CreateDistanceLayer (width , height , s ta r tx , s t a r t y)
42 s e l f . f i l l e d S p a c e = CreateFi l l edSpaceLayer (width , height , s ta r tx , s t a r t y)
43

44 de f show (s e l f) :
45 f i g = p l t . f i g u r e (f i g s i z e =(10 ,10))
46 ax = f i g . add subplot (111)
47 ax . s e t x l i m ([0 , (s e l f . h+1) ∗20])
48 ax . s e t y l i m ([0 , (s e l f .w+1) ∗20])
49 f o r x in range (0 , s e l f .w+2) :
50 ax . p l o t (0 , x∗20 , ’ bo ’)
51 ax . p l o t ((s e l f . h+1)∗20 , x∗20 , ’ bo ’)
52 f o r y in range (0 , s e l f . h+2) :
53 ax . p l o t (y∗20 , 0 , ’ bo ’)
54 ax . p l o t (y∗20 , (s e l f .w+1)∗20 , ’ bo ’)
55 f o r i in range (1 , s e l f .w+1) :
56 f o r j in range (1 , s e l f . h+1) :
57 i f s e l f . road [i , j] > 1 :
58 i f i == s e l f . s t a r t [0] + 1 and j == s e l f . s t a r t [1] + 1 :
59 ax . p l o t (j ∗20 , i ∗20 , ’ r s ’)
60 e l s e :
61 ax . p l o t (j ∗20 , i ∗20 , ’ ro ’)
62 f o r m in neighbourhood :
63 i f (i + m[0] >= 1) and (j + m[1] >= 1) and (i + m[0] <= s e l f .w)

and (j + m[1] <= s e l f . h) :
64 i f s e l f . road [i + m[0] , j + m[1]] > 0 :
65 ax . p l o t ([(j + m[1]) ∗20 , j ∗20] ,
66 [(i + m[0]) ∗20 , i ∗20] , ’ k− ’)
67 e l s e :
68 ax . p l o t (j ∗20 , i ∗20 , ’ go ’)
69 ax . s e t a s p e c t (1)
70 p l t . s a v e f i g (’ r e s u l t ’ + s t r (s e l f .w) + s t r (s e l f . h) + s t r (s e l f . s t a r t [0]) + s t r (s e l f .

s t a r t [1]) + ” . png”)
71 p l t . show ()
72

73 de f updateRoad (s e l f , i , j) :
74 #make sure to pass i , j as 1 ext ra f o r border
75 adjacentCount = 0
76 f o r m in neighbourhood :
77 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w+2) and (j + m

[1] < s e l f . h+2) :
78 i f s e l f . road [i + m[0] , j + m[1]] > 0 :

52

79 adjacentCount = adjacentCount + 1
80 s e l f . road [i + m[0] , j + m[1]] = s e l f . road [i + m[0] , j + m[1]] + 1
81

82 s e l f . road [i , j] = adjacentCount + 1
83

84 de f updateDistance (s e l f , i , j) :
85 adjacentCount = 0
86 minDistance = math . i n f
87 f o r m in neighbourhood :
88 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m[1]

< s e l f . h) :
89 i f s e l f . road [i + 1 + m[0] , j + 1 + m[1]] > 0 :
90 i f s e l f . d i s t anc e [i + m[0] , j + m[1]] < minDistance :
91 minDistance = s e l f . d i s t anc e [i + m[0] , j + m[1]]
92 s e l f . d i s t anc e [i , j] = minDistance + 1
93

94 f o r m in neighbourhood :
95 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m[1]

< s e l f . h) :
96 i f s e l f . road [i + 1 + m[0] , j + 1 + m[1]] :
97 i f not s e l f . d i s t anc e [i + m[0] , j + m[1]] == minDistance :
98 s e l f . updateDistance (i n t (i + m[0]) , i n t (j + m[1]))
99

100 de f updateFi l l edSpace (s e l f , i , j) :
101 s e l f . f i l l e d S p a c e [i , j] = 1
102 f o r m in neighbourhood :
103 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m[1]

< s e l f . h) :
104 #the idea with t h i s be ing that we want to view the road as a l s o a f i l l e d

space
105 s e l f . f i l l e d S p a c e [i + m[0] , j + m[1]] = 1
106

107 de f update (s e l f , i , j) :
108 s e l f . updateRoad (i n t (i +1) , i n t (j +1))
109 s e l f . updateDistance (i , j)
110 s e l f . updateFi l l edSpace (i , j)
111

112 de f gridSum (s e l f , i , j) :
113 #make sure to g ive t h i s i + 1 , j+1
114 t o t a l = 0
115 f o r m in [i −1, i , i +1] :
116 f o r n in [j −1, j , j +1] :
117 i f s e l f . road [m, n] > 0 :
118 t o t a l = t o t a l + 1
119 r e turn t o t a l
120

121 de f roadSum (s e l f , i , j) :
122 #make sure to g ive t h i s i + 1 , j+1
123 t o t a l = 0
124 f o r m in [i −1, i , i +1] :
125 f o r n in [j −1, j , j +1] :
126 i f (m >= 0) and (n >= 0) and (m < s e l f .w+2) and (n < s e l f . h+2) :
127 t o t a l = t o t a l + s e l f . road [m, n]
128 r e turn t o t a l
129

130 de f getAmountEmpty (s e l f) :
131 t = 0
132 f o r i in range (0 , s e l f .w) :
133 f o r j in range (0 , s e l f . h) :
134 i f s e l f . f i l l e d S p a c e [i , j] == 0 :
135 i f not s e l f . road [i +1, j +1] > 0 :
136 t = t + 1
137 r e turn t
138

139 de f roadCount (s e l f) :
140 t = 0
141 f o r i in range (1 , s e l f .w+1) :
142 f o r j in range (1 , s e l f . h+1) :
143 i f s e l f . road [i , j] > 0 :
144 t = t + 1
145 r e turn t
146

147 de f getDis tance (s e l f , i , j) :

53

148 i f s e l f . d i s t anc e [i , j] < 1 :
149 minDistance = 10000
150 f o r m in neighbourhood :
151 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m

[1] < s e l f . h) :
152 i f s e l f . d i s t anc e [i + m[0] , j + m[1]] < minDistance and s e l f . d i s t anc e [

i + m[0] , j + m[1]] >= 1 :
153 minDistance = s e l f . d i s t anc e [i + m[0] , j + m[1]]
154 r e turn minDistance + 1
155 e l s e :
156 r e turn s e l f . d i s t anc e [i , j]
157

158 de f g e t F i l l e d S p a c e s (s e l f , i , j) :
159 t o t a l = 0
160 f o r m in neighbourhood :
161 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m[1]

< s e l f . h) :
162 t o t a l = t o t a l + s e l f . f i l l e d S p a c e [i + m[0] , j + m[1]]
163 r e turn t o t a l
164

165

166 de f co s t (s e l f , i , j , k) :
167 r e turn (s e l f . gridSum (i +1, j +1) ∗ k [0] +
168 s e l f . roadSum (i +1, j +1) ∗ k [1] +
169 s e l f . ge tDi s tance (i , j) ∗ k [3] +
170 s e l f . g e t F i l l e d S p a c e s (i , j) ∗ k [2])
171

172 de f minimumCost (s e l f , k , exc luded =0) :
173 minimum = math . i n f
174 index = []
175 f o r i in range (0 , s e l f .w) :
176 f o r j in range (0 , s e l f . h) :
177 i f s e l f . road [i +1, j +1] > 0 :
178 i f (i >= 0) and (j >= 0) and (i < s e l f .w) and (j < s e l f . h) :
179 count = 0
180 f o r m in neighbourhood :
181 i f s e l f . road [i n t (i + 1 + m[0]) , i n t (j + 1 + m[1])] > 0 :
182 count = count + 1
183 i f count == 4 :
184 cont inue
185 e l s e :
186 f o r m in neighbourhood :
187 i f not s e l f . road [i n t (i + 1 + m[0]) , i n t (j + 1 + m[1])] >

0 :
188 va l = s e l f . c o s t (i + m[0] , j + m[1] , k)
189 i f va l < minimum :
190 minimum = val
191 index = [i n t (i + m[0]) , i n t (j + m[1])]
192

193 r e turn index
194

195 de f i t e r a t e (s e l f , k) :
196 whi le True :
197 i f s e l f . getAmountEmpty () == 0 :
198 break
199

200 chosen = s e l f . minimumCost (k)
201 i f chosen :
202 nextRoad = chosen
203 e l s e :
204 pr in t (’ e x i t − help ’)
205 s e l f . show ()
206 break
207 s e l f . update (nextRoad [0] , nextRoad [1])
208

209 r e t = s e l f . roadCount ()
210 r e turn (r e t)
211

212

213

214

215 de f bruteForceMaximisat ion (beginning , end , sample n , c a r p a r k s i z e , entrance) :
216 minimum road = math . i n f

54

217 r e s u l t s = [[]]
218 f o r q in np . l i n s p a c e (beginning , end , sample n) :
219 pr in t (” p rog r e s s : ” , (q/end) ∗100 , ”%\n”)
220 f o r w in np . l i n s p a c e (beginning , end , sample n) :
221 f o r e in np . l i n s p a c e (beginning , end , sample n) :
222 f o r r in np . l i n s p a c e (beginning , end , sample n) :
223 CarPark = Grid (c a r p a r k s i z e [0] , c a r p a r k s i z e [1] , entrance [0] ,

entrance [1])
224 k = [q ,w, e , r]
225 valu = CarPark . i t e r a t e (k)
226 i f valu == minimum road :
227 r e s u l t s . append (k)
228 i f valu < minimum road :
229 r e s u l t s = [[]]
230 r e s u l t s . append (k)
231 minimum road = valu
232 r e turn r e s u l t s

55

5.2 Python code for the Stochastic approach

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import copy
4 import sys
5 GraphFigure=None
6 axs=None
7 from sc ipy . opt imize import fmin
8 import math
9

10 neighbourhood = [[0 , 1] , [0 , −1] , [1 , 0] , [−1 ,0]]
11

12 bigNeighbourhood = [[0 , 1] , [0 , −1] , [1 , 0] , [−1 ,0]]
13

14 #bigNeighbourhood = [[0 , 1] , [0 , −1] , [1 , 0] , [−1 ,0] , [1 , 1] , [−1 ,−1] , [1 , −1] , [−1 ,1] ,
15 # [0 , 2] , [0 , −2] , [2 , 0] , [−2 ,0]]
16

17 #bigNeighbourhood = [[0 , 1] , [0 , −1] , [1 , 0] , [−1 ,0] , [1 , 1] , [−1 ,−1] , [1 , −1] , [−1 ,1] ,
18 # [0 , 2] , [0 , −2] , [2 , 0] , [−2 ,0] , [2 , 2] , [−2 ,−2] , [2 , −2] , [−2 ,2] ,
19 # [1 , 2] , [−1 ,−2] , [1 , −2] , [−1 ,2] , [2 , 1] , [−2 ,−1] , [2 , −1] , [−2 ,1] ,
20 # [0 , 2] , [0 , −2] , [2 , 0] , [−2 ,0]]
21

22 de f CreateRoadLayer (width , height , s ta r tx , s ta r ty , obstac l eConstant =1) :
23 g r id = np . z e r o s ((width+2, he ight +2))
24 g r id [: , 0] = obstac l eConstant #−1
25 g r id [: , he ight +1] = obstac l eConstant #−1
26 g r id [0 , :] = obstac l eConstant #−1
27 g r id [width +1 , :] = obstac l eConstant #−1
28 g r id [s t a r t x +1, s t a r t y +1] = 1
29 r e turn g r id
30 #These two l a y e r s don ’ t need to con s id e r the boundary so they are sma l l e r . t h i s needs to

be
31 #r e f l e c t e d in the i n d i c e s used to t r a v e r s e e lements
32 de f CreateDistanceLayer (width , height , s ta r tx , s t a r t y) :
33 g r id = np . z e r o s ((width , he ight))
34 g r id [s ta r tx , s t a r t y] = 1
35 r e turn g r id
36

37 de f CreateFi l l edSpaceLayer (width , height , s ta r tx , s t a r t y) :
38 g r id = np . z e r o s ((width , he ight))
39 f o r m in neighbourhood :
40 #Wil l probably need to add p r o t e c t i o n f o r bounding on other s i d e too
41 i f (s t a r t x + m[0] >= 0) and (s t a r t y + m[1] >= 0) :
42 g r id [s t a r t x + m[0] , s t a r t y + m[1]] = 1
43 r e turn g r id
44

45 c l a s s Grid :
46 de f i n i t (s e l f , width , height , s ta r tx , s t a r t y) :
47 s e l f .w = width
48 s e l f . h = he ight
49 s e l f . s t a r t = [s ta r tx , s t a r t y]
50 s e l f . road = CreateRoadLayer (width , height , s ta r tx , s ta r ty , 1)
51 s e l f . d i s t anc e = CreateDistanceLayer (width , height , s ta r tx , s t a r t y)
52 s e l f . f i l l e d S p a c e = CreateFi l l edSpaceLayer (width , height , s ta r tx , s t a r t y)
53

54 de f show (s e l f) :
55 f i g = p l t . f i g u r e (f i g s i z e =(10 ,10))
56 ax = f i g . add subplot (111)
57 ax . s e t x l i m ([0 , (s e l f . h+1) ∗20])
58 ax . s e t y l i m ([0 , (s e l f .w+1) ∗20])
59 f o r x in range (0 , s e l f .w+2) :
60 ax . p l o t (0 , x∗20 , ’ bo ’)
61 ax . p l o t ((s e l f . h+1)∗20 , x∗20 , ’ bo ’)
62 f o r y in range (0 , s e l f . h+2) :
63 ax . p l o t (y∗20 , 0 , ’ bo ’)
64 ax . p l o t (y∗20 , (s e l f .w+1)∗20 , ’ bo ’)
65 f o r i in range (1 , s e l f .w+1) :
66 f o r j in range (1 , s e l f . h+1) :
67 i f s e l f . road [i , j] > 1 :
68 i f i == s e l f . s t a r t [0] + 1 and j == s e l f . s t a r t [1] + 1 :
69 ax . p l o t (j ∗20 , i ∗20 , ’ r s ’)
70 e l s e :

56

71 ax . p l o t (j ∗20 , i ∗20 , ’ ro ’)
72 f o r m in neighbourhood :
73 i f (i + m[0] >= 1) and (j + m[1] >= 1) and (i + m[0] <= s e l f .w)

and (j + m[1] <= s e l f . h) :
74 i f s e l f . road [i + m[0] , j + m[1]] > 0 :
75 ax . p l o t ([(j + m[1]) ∗20 , j ∗20] ,
76 [(i + m[0]) ∗20 , i ∗20] , ’ k− ’)
77 e l s e :
78 ax . p l o t (j ∗20 , i ∗20 , ’ go ’)
79 ax . s e t a s p e c t (1)
80 p l t . s a v e f i g (’ r e s u l t ’ + s t r (s e l f .w) + s t r (s e l f . h) + s t r (s e l f . s t a r t [0]) + s t r (s e l f .

s t a r t [1]) + ” . png”)
81 p l t . show ()
82

83 de f updateRoad (s e l f , i , j) :
84 #make sure to pass i , j as 1 ext ra f o r border
85 adjacentCount = 0
86 f o r m in neighbourhood :
87 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w+2) and (j + m

[1] < s e l f . h+2) :
88 i f s e l f . road [i + m[0] , j + m[1]] > 0 :
89 adjacentCount = adjacentCount + 1
90 s e l f . road [i + m[0] , j + m[1]] = s e l f . road [i + m[0] , j + m[1]] + 1
91

92 s e l f . road [i , j] = adjacentCount + 1
93

94 de f updateDistance (s e l f , i , j) :
95 adjacentCount = 0
96 minDistance = 999999999
97 f o r m in neighbourhood :
98 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m[1]

< s e l f . h) :
99 i f s e l f . road [i + 1 + m[0] , j + 1 + m[1]] > 0 :

100 i f s e l f . d i s t anc e [i + m[0] , j + m[1]] < minDistance :
101 minDistance = s e l f . d i s t anc e [i + m[0] , j + m[1]]
102 s e l f . d i s t anc e [i , j] = minDistance + 1
103

104 f o r m in neighbourhood :
105 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m[1]

< s e l f . h) :
106 i f s e l f . road [i + 1 + m[0] , j + 1 + m[1]] :
107 i f not s e l f . d i s t anc e [i + m[0] , j + m[1]] == minDistance :
108 s e l f . updateDistance (i n t (i + m[0]) , i n t (j + m[1]))
109

110 de f updateFi l l edSpace (s e l f , i , j) :
111 s e l f . f i l l e d S p a c e [i , j] = 1
112 f o r m in neighbourhood :
113 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m[1]

< s e l f . h) :
114 #the idea with t h i s be ing that we want to view the road as a l s o a f i l l e d

space
115 s e l f . f i l l e d S p a c e [i + m[0] , j + m[1]] = 1
116

117 de f de l e t eVer t ex (s e l f , i , j) :
118 s e l f . d i s t anc e [i , j] = 0
119 s e l f . road [i +1, j +1] = 0
120 s e l f . f i l l e d S p a c e [i , j] = 1
121

122

123 de f update (s e l f , i , j) :
124 s e l f . updateRoad (i n t (i +1) , i n t (j +1))
125 s e l f . updateDistance (i , j)
126 s e l f . updateFi l l edSpace (i , j)
127

128

129 de f getAmountEmpty (s e l f) :
130 t = 0
131 f o r i in range (0 , s e l f .w) :
132 f o r j in range (0 , s e l f . h) :
133 i f s e l f . f i l l e d S p a c e [i , j] == 0 :
134 i f not s e l f . road [i +1, j +1] > 0 :
135 t = t + 1
136 r e turn t

57

137

138 de f roadCount (s e l f) :
139 t = 0
140 f o r i in range (1 , s e l f .w+1) :
141 f o r j in range (1 , s e l f . h+1) :
142 i f s e l f . road [i , j] > 0 :
143 t = t + 1
144 r e turn t
145

146 de f neighbourRoadCount (s e l f , i , j) :
147 roadCount = 0
148 f o r m in neighbourhood :
149 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m[1]

< s e l f . h) :
150 i f s e l f . road [i n t (i + m[0] + 1) , i n t (j + m[1] + 1)] :
151 roadCount = roadCount + 1
152 r e turn roadCount
153

154 de f getDis tance (s e l f , i , j) :
155 i f s e l f . d i s t anc e [i , j] < 1 :
156 minDistance = math . i n f
157 f o r m in neighbourhood :
158 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m

[1] < s e l f . h) :
159 i f s e l f . d i s t anc e [i + m[0] , j + m[1]] < minDistance and s e l f . d i s t anc e [

i + m[0] , j + m[1]] >= 1 :
160 minDistance = s e l f . d i s t anc e [i + m[0] , j + m[1]]
161 r e turn minDistance + 1
162 e l s e :
163 r e turn s e l f . d i s t anc e [i , j]
164

165 de f g e t F i l l e d S p a c e s (s e l f , i , j) :
166 t o t a l = 0
167 f o r m in bigNeighbourhood :#

##
168 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m[1]

< s e l f . h) :
169 t o t a l = t o t a l + s e l f . f i l l e d S p a c e [i + m[0] , j + m[1]]
170 r e turn t o t a l
171

172 de f neighbourEmptyCount (s e l f , i , j) :
173 t o t a l = 0
174 count = 0
175 f o r m in neighbourhood :#

###
176 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w) and (j + m[1]

< s e l f . h) :
177 count = count + 1
178 t o t a l = t o t a l + s e l f . f i l l e d S p a c e [i + m[0] , j + m[1]]
179 r e turn count − t o t a l
180

181

182 de f generateCandidates (s e l f , r e l axed=False , veryRelaxed=False) :
183 minimum = math . i n f
184 cand idate s = [[]]
185 f o r i in range (0 , s e l f .w) :
186 f o r j in range (0 , s e l f . h) :
187

188 ############################
189 # I n i t i a l ve r tex s e l e c t i o n #
190 ############################
191 i f not s e l f . road [i +1, j +1] > 0 : #Has to be a road
192 cont inue
193

194 i f not (i >= 0) and (j >= 0) and (i < s e l f .w) and (j < s e l f . h) : # Has to
be with in boundary

195 cont inue
196

197 count = 0
198 f o r m in neighbourhood :
199 i f s e l f . road [i n t (i + 1 + m[0]) , i n t (j + 1 + m[1])] > 0 :
200 count = count + 1
201 i f count == 4 : # Has to not be surrounded

58

202 cont inue
203

204 ##
205 # Now i n d i v i d u a l branching oppurtunity c o n s i d e r a t i o n #
206 ##
207 f o r m in neighbourhood :
208 f l a g = True
209

210 i f s e l f . road [i n t (i + 1 + m[0]) , i n t (j + 1 + m[1])] > 0 : # Has to not
a l r eady be a road

211 cont inue
212

213 i f s e l f . neighbourEmptyCount (i n t (i + m[0]) , i n t (j + m[1])) < 1 :
214 cont inue
215

216 f o r n in neighbourhood :
217 i f s e l f . road [i n t (i + 1 + m[0] + n [0]) , i n t (j + 1 + m[1] + n [1])]

> 0 : # Don ’ t check roads
218 i f [i n t (i + m[0] + n [0]) , i n t (j + m[1] + n [1])] == [i n t (i) ,

i n t (j)] :
219 cont inue
220 e l s e :
221 i f not veryRelaxed :
222 i f r e l axed :
223 i f s e l f . road [i n t (i + m[0] + n [0]+1) , i n t (j + m[1]

+ n [1]+1)] == 1 :
224 cont inue
225 e l s e :
226 f l a g = False
227 e l s e :
228 f l a g = False
229

230

231 i f s e l f . neighbourRoadCount (i + m[0] + n [0] , j + m[1] + n [1]) > 1
and not r e l axed : # Check i f the road i s a l r eady a c c e s s i b l e in 2 ways

232 f l a g = False
233

234 i f f l a g :
235 cand idate s . append ([i n t (i + m[0]) , i n t (j + m[1])])
236

237 r e turn cand idate s
238

239 de f f i ndClo se s tCand idate s (s e l f , v e r t i c e s , th r e shDi s t =1) :
240 minimum = math . i n f
241 minimumSet = [[]]
242 randomSet = [[]]
243 f o r v in v e r t i c e s :
244 i f v == [] :
245 cont inue
246 d i s t = s e l f . ge tDi s tance (v [0] , v [1])
247

248 i f d i s t == minimum :
249 i f minimumSet == [[]] :
250 minimumSet [0] = v
251 e l s e :
252 minimumSet . append (v)
253 e l i f d i s t < minimum :
254 minimumSet =[v]
255 minimum = d i s t
256 f o r v in v e r t i c e s :
257 i f not v in minimumSet :
258 i f np . random . uniform (0 , 1) > th r e shDi s t :
259 i f randomSet == [[]] :
260 randomSet [0] = v
261 e l s e :
262 randomSet . append (v)
263

264 i f minimumSet == [[]] :
265 r e turn [[]]
266 e l i f randomSet == [[]] :
267 r e turn minimumSet
268

269 minimumSet = minimumSet + randomSet

59

270

271 r e turn minimumSet
272

273 de f f indLeastRoadCandidates (s e l f , v e r t i c e s , threshRoad=1) :
274 minimum = math . i n f
275 minimumSet = [[]]
276 randomSet = [[]]
277

278 f o r v in v e r t i c e s :
279 i f v == [] :
280 cont inue
281 road = s e l f . g e t F i l l e d S p a c e s (v [0] , v [1])
282

283 i f road == minimum :
284 i f minimumSet == [[]] :
285 minimumSet [0] = v
286 e l s e :
287 minimumSet . append (v)
288 e l i f road < minimum :
289 minimumSet = [v]
290 minimum = road
291

292 f o r v in v e r t i c e s :
293 i f not v in minimumSet :
294 i f np . random . uniform (0 , 1) > threshRoad :
295 i f randomSet == [[]] :
296 randomSet [0] = v
297 e l s e :
298 randomSet . append (v)
299

300

301 i f minimumSet == [[]] :
302 r e turn [[]]
303 e l i f randomSet == [[]] :
304 r e turn minimumSet
305

306 minimumSet = minimumSet + randomSet
307 r e turn minimumSet
308

309 de f sp l i tCand ida t e s (s e l f , v e r t i c e s) :
310 h o r i z o n t a l = [[]]
311 v e r t i c a l = [[]]
312

313 i f v e r t i c e s = = [[]] :
314 r e turn [[] , []]
315

316 f o r v in v e r t i c e s :
317 i f v ==[] :
318 cont inue
319 f o r m in neighbourhood :
320 i f (v [0] + m[0] >= 0) and (v [1] + m[1] >= 0) and (v [0] + m[0] < s e l f .w)

and (v [1] + m[1] < s e l f . h) :
321 i f s e l f . road [i n t (v [0] + m[0] + 1) , i n t (v [1] + m[1] + 1)] > 0 :
322 i f v not in h o r i z o n t a l and v not in v e r t i c a l :
323 i f (not m[0] == 0) and m[1] == 0 :
324 i f v e r t i c a l == [[]] :
325 v e r t i c a l [0] = v
326 e l s e :
327 v e r t i c a l . append (v)
328

329 i f (not m[1] == 0) and m[0] == 0 :
330 i f h o r i z o n t a l == [[]] :
331 h o r i z o n t a l [0] = v
332 e l s e :
333 h o r i z o n t a l . append (v)
334 r e turn [ho r i zon ta l , v e r t i c a l]
335

336 de f c l ean (s e l f) :
337 v e r t i c e s = [[]]
338 de l e t ed = False
339 f o r i in range (0 , s e l f .w) :
340 f o r j in range (0 , s e l f . h) :
341 i f s e l f . road [i n t (i +1) , i n t (j +1)] :

60

342 f l a g = True
343 f o r m in neighbourhood :
344 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w)

and (j + m[1] < s e l f . h) :
345 i f not s e l f . d i s t anc e [i , j] >= s e l f . d i s t anc e [i n t (i+m[0]) , i n t (j

+m[1])] :
346 f l a g = False
347 break
348 i f f l a g :
349 count = 0
350 count2 = 0
351 f o r m in neighbourhood :
352 i f (i + m[0] >= 0) and (j + m[1] >= 0) and (i + m[0] < s e l f .w

) and (j + m[1] < s e l f . h) :
353 f l a g 2 = False
354 i f s e l f . road [i n t (i + m[0] + 1) , i n t (j + m[1] + 1)] :
355 cont inue
356 count = count+1
357 f o r n in neighbourhood :
358 i f (i + m[0] + n [0] >= 0) and (j + m[1]+ n [1] >= 0)

and (i + m[0] + n [0] < s e l f .w) and (j + m[1] + n [1] < s e l f . h) :
359 i f [i n t (i + m[0] + n [0]) , i n t (j + m[1] + n [1])]

== [i , j] :
360 cont inue
361 e l s e :
362 i f s e l f . road [i n t (i + m[0] + n [0] + 1) , i n t (j

+ m[1] + n [1] + 1)] > 0 :
363 f l a g 2 = True
364 i f f l a g 2 :
365 count2 = count2+1
366

367 i f count2 == count :
368 s e l f . de l e t eVer t ex (i , j)
369 de l e t ed = True
370 e l s e :
371 cont inue
372 r e turn de l e t ed
373

374

375

376

377 de f getNextVertex (s e l f , r e l axed=False , probV=1/2 , threshRoad=1, th re shDi s t =1,
veryRelaxed=False) :

378 cand ida t eVer t i c e s = s e l f . generateCandidates (re laxed , veryRelaxed)
379

380 cand ida t eVer t i c e s = s e l f . s p l i tCand ida t e s (cand ida t eVer t i c e s)
381

382 i f c and ida t eVer t i c e s == [[] , []] :
383 r e turn Fa l se
384 i f c and ida t eVer t i c e s [0] == [[]] :
385 cand ida t eVer t i c e s = cand ida t eVer t i c e s [1]
386 e l i f c and ida t eVe r t i c e s [1] == [[]] :
387 cand ida t eVer t i c e s = cand ida t eVer t i c e s [0]
388 e l s e :
389 i f np . random . uniform (0 , 1) > probV : #Horz ionta l or v e r t i c a l cho i c e
390 cand ida t eVer t i c e s = cand ida t eVer t i c e s [0]
391 e l s e :
392 cand ida t eVer t i c e s = cand ida t eVer t i c e s [1]
393

394 cand ida t eVer t i c e s = s e l f . f indLeastRoadCandidates (cand idateVer t i c e s , threshRoad)
395

396 cand ida t eVer t i c e s = s e l f . f i ndClo se s tCand idate s (cand idateVer t i c e s , th r e shDi s t)
397

398 chosen = np . arange (0 , l en (cand ida t eVe r t i c e s))
399

400 chosen = cand ida t eVer t i c e s [i n t (np . random . cho i c e (chosen))]
401

402 r e turn chosen
403

404

405 de f i t e r a t e (s e l f , probV=1/2 , threshRoad=1, th re shDi s t =1) :
406 whi le True :
407 i f s e l f . getAmountEmpty () == 0 :

61

408 break
409

410 chosen = s e l f . getNextVertex (False , probV , threshRoad , th r e shDi s t)
411

412 i f chosen :
413 nextRoad = chosen
414 e l s e :
415 chosen = s e l f . getNextVertex (True , probV , threshRoad , th r e shDi s t)
416

417 i f chosen :
418 nextRoad = chosen
419 e l s e :
420 chosen = s e l f . getNextVertex (True , probV , threshRoad , threshDist , True

)
421

422 i f chosen :
423 nextRoad = chosen
424 e l s e :
425 pr in t (’ Error − could not i t e r a t e as no p o t e n t i a l v e r t i c e s ’)
426 s e l f . show ()
427 break
428

429 s e l f . update (nextRoad [0] , nextRoad [1])
430

431 r e t = s e l f . roadCount ()
432

433 r e turn (r e t)
434

435

436 de f s imulate (k , p1 , p2 , p3 , c a r p a r k s i z e , entrance , minimum=math . i n f) :
437 min f l ag = False
438 f o r n in range (0 , k) :
439 CarPark = Grid (c a r p a r k s i z e [0] , c a r p a r k s i z e [1] , entrance [0] , entrance [1])
440 # 1−0.4 = 60% chance o f going through
441 CarPark . i t e r a t e (p1 , p2 , p3)
442 c l e a n f l a g = True
443 whi le c l e a n f l a g :
444 c l e a n f l a g = CarPark . c l ean ()
445

446 valu = CarPark . roadCount ()
447 i f valu <= minimum :
448 minimum = valu
449 min f l ag = True
450 MinCarPark = copy . deepcopy (CarPark)
451 i f m in f l ag :
452 pr in t (minimum , ”Road network v e r t i c e s \n with parameters ” , p1 , p2 , p3)
453 MinCarPark . show ()
454 r e turn minimum
455

456 de f bruteForceApproach (s imulat ion n , c a r p a r k s i z e , entrance , sample n) :
457 minimum = math . i n f
458 f o r i in np . l i n s p a c e (0 , 1 , sample n) :
459 f o r j in np . l i n s p a c e (0 , 1 , sample n) :
460 f o r k in np . l i n s p a c e (0 , 1 , sample n) :
461 minimum = simulate (s imulat ion n , i , j , k , c a r p a r k s i z e , entrance ,

minimum)

References

[1] Ian Wise, Roland Trim, Optimisation of car park design, ARUP (Bristol, UK), 2013.

[2] http://publications.lib.chalmers.se/records/fulltext/238498/238498.pdf

[3] https://en.wikipedia.org/wiki/Tree (graph theory)

[4] https://en.wikipedia.org/wiki/Planar graph

[5] https://en.wikipedia.org/wiki/Rapidly-exploring random tree

[6] Nelder, J.A. and Mead, R. (1965), A simplex method for function minimization, The
Computer Journal, 7, pp. 308-313

62

[7] https://en.wikipedia.org/wiki/Integer programming

[8] https://www.python.org/downloads/release/python-363/

[9] https://www.numpy.org/

[10] https://www.scipy.org/

[11] https://en.wikipedia.org/wiki/Reinforcement learning

[12] http://www.bristol.ac.uk/engineering/media/engineering-mathematics/esgi91/esgi-
arup-parking.pdf

63

	Introduction
	Background
	Tile and Trim
	Deterministic approach to optimising the road
	Variational approach to optimising the road
	Optimising over road networks

	Problem Statement
	The Car Park
	The Road Network

	The Deterministic Approach
	Details of the road network
	How the road network is created and expanded
	Attributes of the road network to consider
	Cost function for growing network
	Simplifying the approach
	Boundary of the car park
	How we grow the network
	Representation of a car parking space

	Simplified cost function
	Cost function for selecting the vertex to grow from
	Cost function for deciding how we grow from a chosen vertex

	Growing the network
	Choosing a vertex to grow from
	Choosing the direction to grow from a chosen vertex

	Optimisation of parameters
	The issue of optimisation
	The brute force approach

	Explanation of code
	Using ``layers" to improve performance using memoisation
	Implementation of the cost functions
	Brute force minimisation of objective function

	Results
	Square car park boundaries
	Rectangular car park boundaries

	Result conclusions
	The issue of parameters not being effective across different grid sizes
	Certain attributes being ignored
	Overall approach conclusions

	The Stochastic Approach
	Explaining how we grow
	Formalising the rule sets for considerable new vertices
	Completeness and relaxation of rules

	Filtering the candidate vertices
	Uncertainty and how we can use it in our filtering of potential vertices
	Growing the network
	Pruning the road network

	Simulation
	Explanation of code
	Implementation of rule sets and relaxation of rules
	Ordering of filters in the filtering process
	Incorporating uncertainty into the filtering process
	Implementation of the cleaning process
	Brute force approach to optimising over our parameters

	Results
	Square car park boundaries
	Rectangular car park boundaries
	Result conclusions
	Performance in comparison to deterministic approach
	Parameter choice and general application
	Issue of how our rule choices negatively effect road network
	Overall approach conclusions

	Conclusions and possible extensions
	Testing both approaches with more complex car park configurations
	Using a generative model and the Fourier transform to construct the road network
	Using genetic algorithms to improve the road network structure
	Reinforcement learning as an approach to optimising the road network

	Appendices
	Python code for the Deterministic approach
	Python code for the Stochastic approach

